Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 11 Sayı: 2, 131 - 140, 31.10.2023

Öz

Kaynakça

  • [1] Kermack W.O., McKendrick, A.G. A contribution to the mathematical theory of epidemics, in: Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 115 (772), (1927), 700–721.
  • [2] Valleron A. J. Roles of Mathematical Modeling in Epidemiology, Comptes Rendus de I’Academie des Sciences - Series III- Sciences de la Vie, 323 (5), (2000), 429–433.
  • [3] Allen L. J. S. An Introduction to Mathematical Biology, Department of Mathematics and Statistics, Texas Tech University, Pearson Education., (2007), 348.
  • [4] Hethcote, H. W. The mathematics of infectious diseases, SIAM review, 42(4) , (2000), 599–653.
  • [5] O¨ ztu¨rk, Z., Bilgil, H., & Sorgun, S. Application of Fractional SIQRV Model for SARS-CoV-2 and Stability Analysis, Symmetry, 15(5), (2023), 1048.
  • [6] Linda, J.S.A. An Introduction to Mathematical Biology, Pearson Education Ltd., USA, (2007), pp. 123–127.
  • [7] Bailey N. T. J. , The Mathematical Theory of Infectious Diseases and its Application (Hafner Press), New York (1975).
  • [8] Hethcote H.,Zhien M., Shengbing L. Effects of quarantine in six endemic models for infectious diseases, Mathematical Biosciences , 180 , (2002), 141160.
  • [9] O¨ ztu¨rk, Z., Bilgil, H., & Sorgun, S. Application of Fractional SPR Psychological Disease Model in Turkey and Stability Analysis, Journal of Mathematical Sciences and Modelling, 6(2), (2023), 49-55.
  • [10] O¨ ztu¨rk, Z., Bilgil, H., Sorgun, S. Stability Analysis of Fractional PSQp Smoking Model and Application in Turkey, New Trends in Mathematical Sciences, 10(4), (2022), 54-62.
  • [11] Liu, X.; Takeuchi, Y.; Iwami, S., Liu, X.; Takeuchi, Y.; Iwami, S. SVIR epidemic models with vaccination strategies, J. Theor. Biol. , 253 , (2008), 1–11.
  • [12] Trawicki, M.B. Deterministic Seirs Epidemic Model for Modeling Vital Dynamics, Vaccinations, and Temporary Immunity, Mathematics, 5(1), (2017), 7.
  • [13] O¨ ztu¨rk, Z., Sorgun, S., Bilgil H. SIQRV Modeli ve Nu¨merik Uygulaması, Avrupa Bilim ve Teknoloji Dergisi, (28), (2021), 573-578.
  • [14] Eckalbar, J.C.; Eckalbar, W.L. Dynamics of an SIR model with vaccination dependent on past prevalence with high-order distributed delay. Biosystems , 129, (2015), 50–65.
  • [15] O¨ ztu¨rk, Z., Sorgun, S., Bilgil, H., Erdinc¸, U¨ . New exact solutions of conformable time-fractional bad and good modified Boussinesq equations. Journal of New Theory, (37), (2021), 8-25.
  • [16] I. Podlubny, Fractional Differential Equations, Academy Press, San Diego CA, (1999).
  • [17] Bilgil, H., Yousef, A., Erciyes, A., Erdinc¸, U¨ ., O¨ ztu¨rk, Z. A fractional-order mathematical model based on vaccinated and infected compartments of SARS-CoV-2 with a real case study during the last stages of the epidemiological event. Journal of Computational and Applied Mathematics, 425, (2023), 115015.
  • [18] Yaro, D., Omari S., S. K., Harvim, P., Saviour, A. W., Obeng, B. A. Generalized Euler method for modeling measles with fractional differ ential equations. Int. J. Innovative Research and Development, (2015), 4.
  • [19] Tartof, S. Y., Slezak, J. M., Fischer, H., Hong, V., Ackerson, B. K., Ranasinghe, O. N., & McLaughlin, J. M., Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. The Lancet, 398(10309), (2021), 1407-1416.
  • [20] O¨ zko¨se, F., Yavuz, M., Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey. Computers in biology and medicine, 141, (2022), 105044.
  • [21] Joshi, H., Jha, B. K., Yavuz, M. Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 20(1), (2023), 213-240.
  • [22] O¨ zko¨se, F., Yavuz, M., S¸ enel, M. T., Habbireeh, R. Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom. Chaos, Solitons & Fractals, 157, (2022), 111954.
  • [23] Yavuz, M., Cos¸ar, F. O¨ ., Gu¨nay, F., O¨ zdemir, F. N. A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign. Open Journal of Modelling and Simulation, 9(3), (2021), 299-321.
  • [24] Ahmad, S., Qiu, D., ur Rahman, M. Dynamics of a fractional-order COVID-19 model under the nonsingular kernel of Caputo-Fabrizio operator. Mathematical Modelling and Numerical Simulation with Applications, 2(4), (2022), 228-243.
  • [25] Demir, I., Kirisci, M. Forecasting COVID-19 disease cases using the SARIMA-NNAR hybrid model. Universal Journal of Mathematics and Applications, 5(1), (2022), 15-23.
  • [26] Joshi, H., Yavuz, M., Townley, S., Kumar Jha, B. Stability Analysis of a Non-singular Fractional-order COVID-19 Model with Nonlinear Incidence and Treatment Rate., (2023), Physica Scripta.
  • [27] C¸ akan, U¨ . Stability Analysis of a Mathematical Model SI u I a QR for COVID-19 with the Effect of Contamination Control (Filiation) Strategy. Fundamental Journal of Mathematics and Applications, 4(2), (2021), 110-123.
  • [28] Yavuz, M., Cos¸ar, F. O¨ ., Usta, F. A novel modeling and analysis of fractional-order COVID-19 pandemic having a vaccination strategy. In AIP Conference Proceedings (Vol. 2483, No. 1, p. 070005). AIP Publishing LLC.,(2022, November).
  • [29] P´erez, A. G., Oluyori, D. A. A model for COVID-19 and bacterial pneumonia coinfection with community-and hospital-acquired infections., (2022), arXiv preprint arXiv:2207.13265.
  • [30] Haq, I. U., Ali, N., Nisar, K. S. An optimal control strategy and Gr¨unwald-Letnikov finite-difference numerical scheme for the fractional-order COVID-19 model. Mathematical Modelling and Numerical Simulation with Applications, 2(2), (2022), 108-116.
  • [31] Yavuz, M., Haydar, W. Y. A. A new mathematical modelling and parameter estimation of COVID-19: a case study in Iraq. AIMS Bioengineering, 9(4), (2022), 420-446.

Fractional SIQRV Model for COVID-19 and Numerical Solutions

Yıl 2023, Cilt: 11 Sayı: 2, 131 - 140, 31.10.2023

Öz

There is a pandemic situation caused by the COVID-19 epidemic almost all over the world. Despite the measures taken to prevent this epidemic and the vaccine studies developed, the course of the epidemic changes period as the virus mutates and changes its structure. The common opinion of the experts is that the most important weapon in the ght against the epidemic is the vaccine.In this paper, a new fractional SIQRV model was obtained by adding a class of vaccinated individuals to the SIQR (Susceptible-Infected-Quarantine-Recovered) epidemic disease model. Fractional derivatives are used in the sense of Caputo. In the newly created fractional SIQRV model, the total population is divided into ve parts. Mathematical analyses were performed on susceptible individuals (S), infective individuals (I), quarantined individuals (Q), recovered individuals (R) and vaccinated individuals (V). Numerical results were got with the help of Generalized Euler Method and graphs were drawn.

Kaynakça

  • [1] Kermack W.O., McKendrick, A.G. A contribution to the mathematical theory of epidemics, in: Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 115 (772), (1927), 700–721.
  • [2] Valleron A. J. Roles of Mathematical Modeling in Epidemiology, Comptes Rendus de I’Academie des Sciences - Series III- Sciences de la Vie, 323 (5), (2000), 429–433.
  • [3] Allen L. J. S. An Introduction to Mathematical Biology, Department of Mathematics and Statistics, Texas Tech University, Pearson Education., (2007), 348.
  • [4] Hethcote, H. W. The mathematics of infectious diseases, SIAM review, 42(4) , (2000), 599–653.
  • [5] O¨ ztu¨rk, Z., Bilgil, H., & Sorgun, S. Application of Fractional SIQRV Model for SARS-CoV-2 and Stability Analysis, Symmetry, 15(5), (2023), 1048.
  • [6] Linda, J.S.A. An Introduction to Mathematical Biology, Pearson Education Ltd., USA, (2007), pp. 123–127.
  • [7] Bailey N. T. J. , The Mathematical Theory of Infectious Diseases and its Application (Hafner Press), New York (1975).
  • [8] Hethcote H.,Zhien M., Shengbing L. Effects of quarantine in six endemic models for infectious diseases, Mathematical Biosciences , 180 , (2002), 141160.
  • [9] O¨ ztu¨rk, Z., Bilgil, H., & Sorgun, S. Application of Fractional SPR Psychological Disease Model in Turkey and Stability Analysis, Journal of Mathematical Sciences and Modelling, 6(2), (2023), 49-55.
  • [10] O¨ ztu¨rk, Z., Bilgil, H., Sorgun, S. Stability Analysis of Fractional PSQp Smoking Model and Application in Turkey, New Trends in Mathematical Sciences, 10(4), (2022), 54-62.
  • [11] Liu, X.; Takeuchi, Y.; Iwami, S., Liu, X.; Takeuchi, Y.; Iwami, S. SVIR epidemic models with vaccination strategies, J. Theor. Biol. , 253 , (2008), 1–11.
  • [12] Trawicki, M.B. Deterministic Seirs Epidemic Model for Modeling Vital Dynamics, Vaccinations, and Temporary Immunity, Mathematics, 5(1), (2017), 7.
  • [13] O¨ ztu¨rk, Z., Sorgun, S., Bilgil H. SIQRV Modeli ve Nu¨merik Uygulaması, Avrupa Bilim ve Teknoloji Dergisi, (28), (2021), 573-578.
  • [14] Eckalbar, J.C.; Eckalbar, W.L. Dynamics of an SIR model with vaccination dependent on past prevalence with high-order distributed delay. Biosystems , 129, (2015), 50–65.
  • [15] O¨ ztu¨rk, Z., Sorgun, S., Bilgil, H., Erdinc¸, U¨ . New exact solutions of conformable time-fractional bad and good modified Boussinesq equations. Journal of New Theory, (37), (2021), 8-25.
  • [16] I. Podlubny, Fractional Differential Equations, Academy Press, San Diego CA, (1999).
  • [17] Bilgil, H., Yousef, A., Erciyes, A., Erdinc¸, U¨ ., O¨ ztu¨rk, Z. A fractional-order mathematical model based on vaccinated and infected compartments of SARS-CoV-2 with a real case study during the last stages of the epidemiological event. Journal of Computational and Applied Mathematics, 425, (2023), 115015.
  • [18] Yaro, D., Omari S., S. K., Harvim, P., Saviour, A. W., Obeng, B. A. Generalized Euler method for modeling measles with fractional differ ential equations. Int. J. Innovative Research and Development, (2015), 4.
  • [19] Tartof, S. Y., Slezak, J. M., Fischer, H., Hong, V., Ackerson, B. K., Ranasinghe, O. N., & McLaughlin, J. M., Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. The Lancet, 398(10309), (2021), 1407-1416.
  • [20] O¨ zko¨se, F., Yavuz, M., Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey. Computers in biology and medicine, 141, (2022), 105044.
  • [21] Joshi, H., Jha, B. K., Yavuz, M. Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 20(1), (2023), 213-240.
  • [22] O¨ zko¨se, F., Yavuz, M., S¸ enel, M. T., Habbireeh, R. Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom. Chaos, Solitons & Fractals, 157, (2022), 111954.
  • [23] Yavuz, M., Cos¸ar, F. O¨ ., Gu¨nay, F., O¨ zdemir, F. N. A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign. Open Journal of Modelling and Simulation, 9(3), (2021), 299-321.
  • [24] Ahmad, S., Qiu, D., ur Rahman, M. Dynamics of a fractional-order COVID-19 model under the nonsingular kernel of Caputo-Fabrizio operator. Mathematical Modelling and Numerical Simulation with Applications, 2(4), (2022), 228-243.
  • [25] Demir, I., Kirisci, M. Forecasting COVID-19 disease cases using the SARIMA-NNAR hybrid model. Universal Journal of Mathematics and Applications, 5(1), (2022), 15-23.
  • [26] Joshi, H., Yavuz, M., Townley, S., Kumar Jha, B. Stability Analysis of a Non-singular Fractional-order COVID-19 Model with Nonlinear Incidence and Treatment Rate., (2023), Physica Scripta.
  • [27] C¸ akan, U¨ . Stability Analysis of a Mathematical Model SI u I a QR for COVID-19 with the Effect of Contamination Control (Filiation) Strategy. Fundamental Journal of Mathematics and Applications, 4(2), (2021), 110-123.
  • [28] Yavuz, M., Cos¸ar, F. O¨ ., Usta, F. A novel modeling and analysis of fractional-order COVID-19 pandemic having a vaccination strategy. In AIP Conference Proceedings (Vol. 2483, No. 1, p. 070005). AIP Publishing LLC.,(2022, November).
  • [29] P´erez, A. G., Oluyori, D. A. A model for COVID-19 and bacterial pneumonia coinfection with community-and hospital-acquired infections., (2022), arXiv preprint arXiv:2207.13265.
  • [30] Haq, I. U., Ali, N., Nisar, K. S. An optimal control strategy and Gr¨unwald-Letnikov finite-difference numerical scheme for the fractional-order COVID-19 model. Mathematical Modelling and Numerical Simulation with Applications, 2(2), (2022), 108-116.
  • [31] Yavuz, M., Haydar, W. Y. A. A new mathematical modelling and parameter estimation of COVID-19: a case study in Iraq. AIMS Bioengineering, 9(4), (2022), 420-446.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik
Bölüm Articles
Yazarlar

Zafer Öztürk 0000-0001-5662-4670

Halis Bilgil

Sezer Sorgun

Yayımlanma Tarihi 31 Ekim 2023
Gönderilme Tarihi 1 Mart 2022
Kabul Tarihi 12 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 2

Kaynak Göster

APA Öztürk, Z., Bilgil, H., & Sorgun, S. (2023). Fractional SIQRV Model for COVID-19 and Numerical Solutions. Konuralp Journal of Mathematics, 11(2), 131-140.
AMA Öztürk Z, Bilgil H, Sorgun S. Fractional SIQRV Model for COVID-19 and Numerical Solutions. Konuralp J. Math. Ekim 2023;11(2):131-140.
Chicago Öztürk, Zafer, Halis Bilgil, ve Sezer Sorgun. “Fractional SIQRV Model for COVID-19 and Numerical Solutions”. Konuralp Journal of Mathematics 11, sy. 2 (Ekim 2023): 131-40.
EndNote Öztürk Z, Bilgil H, Sorgun S (01 Ekim 2023) Fractional SIQRV Model for COVID-19 and Numerical Solutions. Konuralp Journal of Mathematics 11 2 131–140.
IEEE Z. Öztürk, H. Bilgil, ve S. Sorgun, “Fractional SIQRV Model for COVID-19 and Numerical Solutions”, Konuralp J. Math., c. 11, sy. 2, ss. 131–140, 2023.
ISNAD Öztürk, Zafer vd. “Fractional SIQRV Model for COVID-19 and Numerical Solutions”. Konuralp Journal of Mathematics 11/2 (Ekim 2023), 131-140.
JAMA Öztürk Z, Bilgil H, Sorgun S. Fractional SIQRV Model for COVID-19 and Numerical Solutions. Konuralp J. Math. 2023;11:131–140.
MLA Öztürk, Zafer vd. “Fractional SIQRV Model for COVID-19 and Numerical Solutions”. Konuralp Journal of Mathematics, c. 11, sy. 2, 2023, ss. 131-40.
Vancouver Öztürk Z, Bilgil H, Sorgun S. Fractional SIQRV Model for COVID-19 and Numerical Solutions. Konuralp J. Math. 2023;11(2):131-40.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.