[2] Amruthalakshmi, M. R., Prakasha, D. G., Turki, N. B. and Unal, I.: η-Ricci tensor on α-cosymplectic manifolds,
Hindawi Adv. Math. Phys., Vol. Article ID 7939654, 11 pag., (2022).
[3] Beyendi, S., Ayar, G., Aktan, N.: On a type of α-cosymplectic manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68, 852-861 (2019).
[13] Ingalahalli, G. Anil, S. C., Begewadi, C. S.: A study on W8-curvature tensor in Kenmotsu manifolds, Int. J. Math. And Appl., 8 (2), 27-34 (2020).
[14] Jahanara, B., Haesen, S., Senturk, Z. and Verstraelen, L.: On the parallel transport of the Ricci curvatures, J. Geom. Phys., 57, 1771-1777 (2007).
[16] Kim, T. W., Pak, H. K.: Canonical foliations of certain classes of almost contact metric structures, Acta Math, Sinica,
Eng. Ser. Aug., 21 (4), 841-846 (2005).
[17] Li, J. and Liu, X.: Ricci solitons on homogeneous almost α-cosymplectic three-manifolds, Mediterr. J. Math.,
https://doi.org/10.1007/s00009-021-01947-7 1660-5446/22/010001-12, 19:26, (2022).
[18] Matsumoto, K., Ianus, S. and Milrai, I.: Publicationes Mathematicae Debrecen, 33(3-4), 199-204 (1986).
[19] Njori, P. W., Moindi, S. K. and Pokhariyal, G. P.: A study on W6-curvature tensors and W8-curvature tensors in Kenmotsu manifolds admitting semisymmetric metric connection, Int. J. Stat. Appl. Math., 6 (2), 01-05 (2021).
[20] Olszak, Z.: On almost cosymplectic manifolds, Kodai Math, 4 (2), 239- 250 (1981).
[21] Öztürk, H., Murathan, C., Aktan, N., Vanlı, A. T.: Almost α-cosymplectic f-manifolds, Analele stııntıfıce ale
unıversıtatıı ’AI. I. Cuza’ Dı ıas ̧ı S. N., Matematica, Tomul LX, f. 1., (2014).
[22] Pokhariyal, G. P.: Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 No. 1, 133-139 (1982).
[23] Pokhariyal, G. P., Mishra, R. S.: The curvature tensor and their relativistic significance, Yokohoma Math. J. 18, 105-108 (1970).
[24] Shaikh, A. A. and Hui, S. K.: On locally φ-symmetric β-Kenmotsu manifolds, Extracta Mathematicae, 24, 301-316 (2009).
[25] Tripathi, M. M. and Gupta, P.: T-curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Studies, Vol: 4, No: 1, 117-129 (2011).
[26] Uwimbabazi Ruganzu, L. F., Moindi, S. K., Pokhariyal, G. P. and Katende, J.: η-Ricci solitons defined with W8-curvature tensor and cylic Ricci tensor on para-Kenmotsu manifolds, Int. J. Stat. Appl. Math., 4 (5), 80-84 (2019).
[27] Wanjiru, W. K.: A study of W6-curvature tensor in sasakian manifold, (IJRSI), Vol: 6 (5), 343-346 (2019).
[2] Amruthalakshmi, M. R., Prakasha, D. G., Turki, N. B. and Unal, I.: η-Ricci tensor on α-cosymplectic manifolds,
Hindawi Adv. Math. Phys., Vol. Article ID 7939654, 11 pag., (2022).
[3] Beyendi, S., Ayar, G., Aktan, N.: On a type of α-cosymplectic manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68, 852-861 (2019).
[13] Ingalahalli, G. Anil, S. C., Begewadi, C. S.: A study on W8-curvature tensor in Kenmotsu manifolds, Int. J. Math. And Appl., 8 (2), 27-34 (2020).
[14] Jahanara, B., Haesen, S., Senturk, Z. and Verstraelen, L.: On the parallel transport of the Ricci curvatures, J. Geom. Phys., 57, 1771-1777 (2007).
[16] Kim, T. W., Pak, H. K.: Canonical foliations of certain classes of almost contact metric structures, Acta Math, Sinica,
Eng. Ser. Aug., 21 (4), 841-846 (2005).
[17] Li, J. and Liu, X.: Ricci solitons on homogeneous almost α-cosymplectic three-manifolds, Mediterr. J. Math.,
https://doi.org/10.1007/s00009-021-01947-7 1660-5446/22/010001-12, 19:26, (2022).
[18] Matsumoto, K., Ianus, S. and Milrai, I.: Publicationes Mathematicae Debrecen, 33(3-4), 199-204 (1986).
[19] Njori, P. W., Moindi, S. K. and Pokhariyal, G. P.: A study on W6-curvature tensors and W8-curvature tensors in Kenmotsu manifolds admitting semisymmetric metric connection, Int. J. Stat. Appl. Math., 6 (2), 01-05 (2021).
[20] Olszak, Z.: On almost cosymplectic manifolds, Kodai Math, 4 (2), 239- 250 (1981).
[21] Öztürk, H., Murathan, C., Aktan, N., Vanlı, A. T.: Almost α-cosymplectic f-manifolds, Analele stııntıfıce ale
unıversıtatıı ’AI. I. Cuza’ Dı ıas ̧ı S. N., Matematica, Tomul LX, f. 1., (2014).
[22] Pokhariyal, G. P.: Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 No. 1, 133-139 (1982).
[23] Pokhariyal, G. P., Mishra, R. S.: The curvature tensor and their relativistic significance, Yokohoma Math. J. 18, 105-108 (1970).
[24] Shaikh, A. A. and Hui, S. K.: On locally φ-symmetric β-Kenmotsu manifolds, Extracta Mathematicae, 24, 301-316 (2009).
[25] Tripathi, M. M. and Gupta, P.: T-curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Studies, Vol: 4, No: 1, 117-129 (2011).
[26] Uwimbabazi Ruganzu, L. F., Moindi, S. K., Pokhariyal, G. P. and Katende, J.: η-Ricci solitons defined with W8-curvature tensor and cylic Ricci tensor on para-Kenmotsu manifolds, Int. J. Stat. Appl. Math., 4 (5), 80-84 (2019).
[27] Wanjiru, W. K.: A study of W6-curvature tensor in sasakian manifold, (IJRSI), Vol: 6 (5), 343-346 (2019).
Beyendi, S. (2022). Some Results on $\mathcal{W}_8$-Curvature Tensor in $\alpha$-Cosymplectic Manifolds. Mathematical Sciences and Applications E-Notes, 10(4), 208-216. https://doi.org/10.36753/mathenot.1125031
AMA
Beyendi S. Some Results on $\mathcal{W}_8$-Curvature Tensor in $\alpha$-Cosymplectic Manifolds. Math. Sci. Appl. E-Notes. Aralık 2022;10(4):208-216. doi:10.36753/mathenot.1125031
Chicago
Beyendi, Selahattin. “Some Results on $\mathcal{W}_8$-Curvature Tensor in $\alpha$-Cosymplectic Manifolds”. Mathematical Sciences and Applications E-Notes 10, sy. 4 (Aralık 2022): 208-16. https://doi.org/10.36753/mathenot.1125031.
EndNote
Beyendi S (01 Aralık 2022) Some Results on $\mathcal{W}_8$-Curvature Tensor in $\alpha$-Cosymplectic Manifolds. Mathematical Sciences and Applications E-Notes 10 4 208–216.
IEEE
S. Beyendi, “Some Results on $\mathcal{W}_8$-Curvature Tensor in $\alpha$-Cosymplectic Manifolds”, Math. Sci. Appl. E-Notes, c. 10, sy. 4, ss. 208–216, 2022, doi: 10.36753/mathenot.1125031.
ISNAD
Beyendi, Selahattin. “Some Results on $\mathcal{W}_8$-Curvature Tensor in $\alpha$-Cosymplectic Manifolds”. Mathematical Sciences and Applications E-Notes 10/4 (Aralık 2022), 208-216. https://doi.org/10.36753/mathenot.1125031.
JAMA
Beyendi S. Some Results on $\mathcal{W}_8$-Curvature Tensor in $\alpha$-Cosymplectic Manifolds. Math. Sci. Appl. E-Notes. 2022;10:208–216.
MLA
Beyendi, Selahattin. “Some Results on $\mathcal{W}_8$-Curvature Tensor in $\alpha$-Cosymplectic Manifolds”. Mathematical Sciences and Applications E-Notes, c. 10, sy. 4, 2022, ss. 208-16, doi:10.36753/mathenot.1125031.
Vancouver
Beyendi S. Some Results on $\mathcal{W}_8$-Curvature Tensor in $\alpha$-Cosymplectic Manifolds. Math. Sci. Appl. E-Notes. 2022;10(4):208-16.