Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 89 - 94, 30.06.2020
https://doi.org/10.22531/muglajsci.652372

Öz

Kaynakça

  • [1] Corradini, M. L., Cristofaro, A. and Orlando, G., “Stabilization of discrete-time linear systems with saturating actuators using sliding modes: Application to a twin-rotor system”, in: IEEE Conf. on Decision and Control, Orlando, Florida, USA, 2011, p. 8237–8242.
  • [2] Verzilli, L., “Progetto e sviluppo di un controllore a struttura variabile per un twin rotor, Master’s thesis”, Universit´a Politecnica delle Marche, Ancona, Italy, 2007.
  • [3] Ahmad, S., Chipperfield and A., Tokhi, M., “Dynamic modelling and linear quadratic gaussian control of a twin-rotor multi-input multi-output system”, Proc. of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, v. 217, n. 3, p. 203–227, 2003.
  • [4] Ahmad, S., Chipperfield and A., Tokhi, M., “Dynamic modelling and open-loop control of a two-degree-of-freedom twin-rotor multi-input multi-output system”, Proc. of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, v. 218, n. 6, p. 451–463, 2004.
  • [5] Rahideh, A., Shaheed, M. and Huijberts, H., “Dynamic modelling of a trms using analytical and empirical approaches”, Control Engineering Practice, v. 16, n. 3, p. 241–259, 2008.
  • [6] Rahideh, A. and Shaheed, M. H., “Dynamic modelling of a twin rotor mimo system using grey box approach”, in: Int. Symp. on Mechatronics and Its Applications, Amman, Jordan, 2008, p. 1–6.
  • [7] Toha, S. and Tokhi, M., “MLP and Elman recurrent neural network modelling for the TRMS”, in: Int. Conf. on Cybernetic Intelligent Systems, London, UK, 2008, p. 1–6.
  • [8] Shaheed, H. M., “Feedforward neural network based non-linear dynamic modelling of a TRMS using rprop algorithm”, Aircraft Engineering and Aerospace Technology, v. 77, n. 1, p. 13–22, 2005.
  • [9] Lu, T.-W. and Wen, P., “Time optimal and robust control of twin rotor system”, in: Int. Conf. on Control and Automation, Guangzhou, China, 2007, p. 862–866.
  • [10] Choi, H. H., “Sliding-mode output feedback control design”, IEEE Tr. On Industrial Electronics, v. 55, n. 11, p. 4047–4054, 2008.
  • [11] Rahideh, A., Shaheed, M. and Bajodah, A., “Neural network based adaptive non-linear model inversion control of a twin rotor system in real time”, in: 7th IEEE International Conference on Cybernetic Intelligent Systems, London, England, 2008, p. 1–6.
  • [12] Su, J.-P., Liang, C.-Y. and Chen, H.-M, “Robust control of a class of nonlinear systems and its application to a twin rotor mimo system”, in: IEEE Int. Conf. on Industrial Technology, Bangkok, Thailand, 2002, p. 1272–1277.
  • [13] Karimi, H. R. and Motlagh, M. R. J., “Robust feedback linearization control for a non linearizable mimo nonlinear system in the presence of model uncertainties”, in: IEEE Int. Conf. on Service Operations and Logistics, and Informatics, Shanghai, China, 2006, p. 965–970.
  • [14] L´opez-Martınez and M., Rubio, F., “Control of a laboratory helicopter using feedback linearization”, in: European Control Conf., Cambridge, UK, 2003, p. 1–4.
  • [15] Mustafa, G. and Iqbal, N., “Controller design for a twin rotor helicopter model via exact state feedback linearization”, in: IEEE Int. Multitopic Conf., Lahore, Pakistan, IEEE, 2004, p. 706–711.
  • [16] Pratap, B., Purwar and S., “State observer based robust feedback linearization controller for twin rotor mimo system”, in: Int. Conf. on Control Applications, Dubrovnik, Croatia, 2012, p. 1074–1079.
  • [17] Pratap, B., Agrawal, A. and Purwar, S., “Optimal control of twin rotor mimo system using output feedback”, in: IEEE Int. Conf. on Power, Control and Embedded Systems, Allahabad, India, 2012, p. 1–6.
  • [18] Li, Z., Liu, H., Zhu, B., Gao, H. and Kaynak, O., “Nonlinear robust attitude tracking control of a table-mount experimental helicopter using output-feedback”, IEEE Trans. on Industrial Electronics v. 62 n. 9, p. 5665–5676, 2015.
  • [19] Khalil, H. K., Nonlinear Control, Pearson (Addison-Wesley), New Jersey, USA, 2015.
  • [20] Chen, J., Behal, A. and Dawson, D. M., “Robust feedback control for a class of uncertain mimo nonlinear systems”, IEEE Tr. on Automatic Control v. 53, n. 2, p. 591–596, 2008.
  • [21] Xian, B., de Queiroz, M. S., Dawson, D. M. and McIntyre, M. L., “A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems”, Automatica, v. 40, n. 4, p. 695–700, 2004.
  • [22] Dawson, D., Qu, Z. and Carroll, J., “On the state observation and output feedback problems for nonlinear uncertain dynamic systems”, in: Southeastcon’92, Proceedings., IEEE, p. 808–811, 1992.
  • [23] Oh, S. and Khalil, H. K., “Output feedback stabilization using variable structure control”, Inter. J. of Control v. 62, n. 4, p. 831–848, 1995.
  • [24] Rahideh, A. and Shaheed, M., “Mathematical dynamic modelling of a twin-rotor multiple input-multiple output system”, Proc. of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, v. 221, n. 1, p. 89–101, 2007.
  • [25] Atassi, A. N. and Khalil, H. K., “A separation principle for the stabilization of a class of nonlinear systems”, IEEE Trans. Automat. Contr., v. 44, n. 9, p. 1672–1687, 1999.
  • [26] Bayrak, A., Dogan F., Tatlicioglu E. and Ozdemirel B., “Design of an experimental twin-rotor multi-input multi-output system”, Computer Applications in Engineering Education, v. 23, n. 4, p. 578-586, 2015.

MODEL-FREE OUTPUT FEEDBACK CONTROLLER DESIGN FOR TWIN ROTOR SYSTEMS

Yıl 2020, , 89 - 94, 30.06.2020
https://doi.org/10.22531/muglajsci.652372

Öz

In this work, tracking control of twin rotor systems is aimed. The control problem is restricted by the lack of mathematical model of the twin rotor and further complicated by the unavailability of the angular velocity measurements. A model–free controller in conjunction with a high gain observer is designed. Experiments performed on a twin rotor system demonstrates the viability of the controller–observer couple.

Kaynakça

  • [1] Corradini, M. L., Cristofaro, A. and Orlando, G., “Stabilization of discrete-time linear systems with saturating actuators using sliding modes: Application to a twin-rotor system”, in: IEEE Conf. on Decision and Control, Orlando, Florida, USA, 2011, p. 8237–8242.
  • [2] Verzilli, L., “Progetto e sviluppo di un controllore a struttura variabile per un twin rotor, Master’s thesis”, Universit´a Politecnica delle Marche, Ancona, Italy, 2007.
  • [3] Ahmad, S., Chipperfield and A., Tokhi, M., “Dynamic modelling and linear quadratic gaussian control of a twin-rotor multi-input multi-output system”, Proc. of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, v. 217, n. 3, p. 203–227, 2003.
  • [4] Ahmad, S., Chipperfield and A., Tokhi, M., “Dynamic modelling and open-loop control of a two-degree-of-freedom twin-rotor multi-input multi-output system”, Proc. of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, v. 218, n. 6, p. 451–463, 2004.
  • [5] Rahideh, A., Shaheed, M. and Huijberts, H., “Dynamic modelling of a trms using analytical and empirical approaches”, Control Engineering Practice, v. 16, n. 3, p. 241–259, 2008.
  • [6] Rahideh, A. and Shaheed, M. H., “Dynamic modelling of a twin rotor mimo system using grey box approach”, in: Int. Symp. on Mechatronics and Its Applications, Amman, Jordan, 2008, p. 1–6.
  • [7] Toha, S. and Tokhi, M., “MLP and Elman recurrent neural network modelling for the TRMS”, in: Int. Conf. on Cybernetic Intelligent Systems, London, UK, 2008, p. 1–6.
  • [8] Shaheed, H. M., “Feedforward neural network based non-linear dynamic modelling of a TRMS using rprop algorithm”, Aircraft Engineering and Aerospace Technology, v. 77, n. 1, p. 13–22, 2005.
  • [9] Lu, T.-W. and Wen, P., “Time optimal and robust control of twin rotor system”, in: Int. Conf. on Control and Automation, Guangzhou, China, 2007, p. 862–866.
  • [10] Choi, H. H., “Sliding-mode output feedback control design”, IEEE Tr. On Industrial Electronics, v. 55, n. 11, p. 4047–4054, 2008.
  • [11] Rahideh, A., Shaheed, M. and Bajodah, A., “Neural network based adaptive non-linear model inversion control of a twin rotor system in real time”, in: 7th IEEE International Conference on Cybernetic Intelligent Systems, London, England, 2008, p. 1–6.
  • [12] Su, J.-P., Liang, C.-Y. and Chen, H.-M, “Robust control of a class of nonlinear systems and its application to a twin rotor mimo system”, in: IEEE Int. Conf. on Industrial Technology, Bangkok, Thailand, 2002, p. 1272–1277.
  • [13] Karimi, H. R. and Motlagh, M. R. J., “Robust feedback linearization control for a non linearizable mimo nonlinear system in the presence of model uncertainties”, in: IEEE Int. Conf. on Service Operations and Logistics, and Informatics, Shanghai, China, 2006, p. 965–970.
  • [14] L´opez-Martınez and M., Rubio, F., “Control of a laboratory helicopter using feedback linearization”, in: European Control Conf., Cambridge, UK, 2003, p. 1–4.
  • [15] Mustafa, G. and Iqbal, N., “Controller design for a twin rotor helicopter model via exact state feedback linearization”, in: IEEE Int. Multitopic Conf., Lahore, Pakistan, IEEE, 2004, p. 706–711.
  • [16] Pratap, B., Purwar and S., “State observer based robust feedback linearization controller for twin rotor mimo system”, in: Int. Conf. on Control Applications, Dubrovnik, Croatia, 2012, p. 1074–1079.
  • [17] Pratap, B., Agrawal, A. and Purwar, S., “Optimal control of twin rotor mimo system using output feedback”, in: IEEE Int. Conf. on Power, Control and Embedded Systems, Allahabad, India, 2012, p. 1–6.
  • [18] Li, Z., Liu, H., Zhu, B., Gao, H. and Kaynak, O., “Nonlinear robust attitude tracking control of a table-mount experimental helicopter using output-feedback”, IEEE Trans. on Industrial Electronics v. 62 n. 9, p. 5665–5676, 2015.
  • [19] Khalil, H. K., Nonlinear Control, Pearson (Addison-Wesley), New Jersey, USA, 2015.
  • [20] Chen, J., Behal, A. and Dawson, D. M., “Robust feedback control for a class of uncertain mimo nonlinear systems”, IEEE Tr. on Automatic Control v. 53, n. 2, p. 591–596, 2008.
  • [21] Xian, B., de Queiroz, M. S., Dawson, D. M. and McIntyre, M. L., “A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems”, Automatica, v. 40, n. 4, p. 695–700, 2004.
  • [22] Dawson, D., Qu, Z. and Carroll, J., “On the state observation and output feedback problems for nonlinear uncertain dynamic systems”, in: Southeastcon’92, Proceedings., IEEE, p. 808–811, 1992.
  • [23] Oh, S. and Khalil, H. K., “Output feedback stabilization using variable structure control”, Inter. J. of Control v. 62, n. 4, p. 831–848, 1995.
  • [24] Rahideh, A. and Shaheed, M., “Mathematical dynamic modelling of a twin-rotor multiple input-multiple output system”, Proc. of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, v. 221, n. 1, p. 89–101, 2007.
  • [25] Atassi, A. N. and Khalil, H. K., “A separation principle for the stabilization of a class of nonlinear systems”, IEEE Trans. Automat. Contr., v. 44, n. 9, p. 1672–1687, 1999.
  • [26] Bayrak, A., Dogan F., Tatlicioglu E. and Ozdemirel B., “Design of an experimental twin-rotor multi-input multi-output system”, Computer Applications in Engineering Education, v. 23, n. 4, p. 578-586, 2015.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Meryem Deniz 0000-0001-8546-4477

Enver Tatlıcıoğlu 0000-0001-5623-9975

Alper Bayrak 0000-0003-1851-8951

Yayımlanma Tarihi 30 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Deniz, M., Tatlıcıoğlu, E., & Bayrak, A. (2020). MODEL-FREE OUTPUT FEEDBACK CONTROLLER DESIGN FOR TWIN ROTOR SYSTEMS. Mugla Journal of Science and Technology, 6(1), 89-94. https://doi.org/10.22531/muglajsci.652372
AMA Deniz M, Tatlıcıoğlu E, Bayrak A. MODEL-FREE OUTPUT FEEDBACK CONTROLLER DESIGN FOR TWIN ROTOR SYSTEMS. MJST. Haziran 2020;6(1):89-94. doi:10.22531/muglajsci.652372
Chicago Deniz, Meryem, Enver Tatlıcıoğlu, ve Alper Bayrak. “MODEL-FREE OUTPUT FEEDBACK CONTROLLER DESIGN FOR TWIN ROTOR SYSTEMS”. Mugla Journal of Science and Technology 6, sy. 1 (Haziran 2020): 89-94. https://doi.org/10.22531/muglajsci.652372.
EndNote Deniz M, Tatlıcıoğlu E, Bayrak A (01 Haziran 2020) MODEL-FREE OUTPUT FEEDBACK CONTROLLER DESIGN FOR TWIN ROTOR SYSTEMS. Mugla Journal of Science and Technology 6 1 89–94.
IEEE M. Deniz, E. Tatlıcıoğlu, ve A. Bayrak, “MODEL-FREE OUTPUT FEEDBACK CONTROLLER DESIGN FOR TWIN ROTOR SYSTEMS”, MJST, c. 6, sy. 1, ss. 89–94, 2020, doi: 10.22531/muglajsci.652372.
ISNAD Deniz, Meryem vd. “MODEL-FREE OUTPUT FEEDBACK CONTROLLER DESIGN FOR TWIN ROTOR SYSTEMS”. Mugla Journal of Science and Technology 6/1 (Haziran 2020), 89-94. https://doi.org/10.22531/muglajsci.652372.
JAMA Deniz M, Tatlıcıoğlu E, Bayrak A. MODEL-FREE OUTPUT FEEDBACK CONTROLLER DESIGN FOR TWIN ROTOR SYSTEMS. MJST. 2020;6:89–94.
MLA Deniz, Meryem vd. “MODEL-FREE OUTPUT FEEDBACK CONTROLLER DESIGN FOR TWIN ROTOR SYSTEMS”. Mugla Journal of Science and Technology, c. 6, sy. 1, 2020, ss. 89-94, doi:10.22531/muglajsci.652372.
Vancouver Deniz M, Tatlıcıoğlu E, Bayrak A. MODEL-FREE OUTPUT FEEDBACK CONTROLLER DESIGN FOR TWIN ROTOR SYSTEMS. MJST. 2020;6(1):89-94.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.