In
this paper, the effects of the electrode type on microstructure and hardness of
the resistance spot welded junctions of DP steel were studied. Commercial
galvanized DP sheet steel was used. Resistance spot welding (RSW), with
changing electrode type according to geometry, has been carried out with
constant weld time, weld current and weld pressure. Microstructure and hardness
are depending on materials properties and weld parameter particularly heat
input. Heat input is resulted from welding condition and parameters. Electrode
tip type effects welding contact and heat transfer during RSW. Results showed
that particularly spherical type electrode showed low heat input thus limited
microstructure changing at heat affected zone. This have on positive effect on
properties of the junctions. Depending on chemical composition of DP 600 harder
phases generally formed at weld zone.
[1] Kelkar A., Roth R., Clarl J., “Can aluminum be an economical alternative to steel” JOM, 53(8), 28–32, 2001.
[2] Khan M.I., Kuntz M.L., Biro E., Zhou Y. “Microstructure and mechanical properties of resistance spot welded advanced high strength steels” Materials Transactions, 49(7), 1629-1637, 2008.
[3] Long X., Khanna S.K., “Fatigue properties and failure characterization of spot welded high strength steel sheet” International Journal of Fatigue, 29, 879-886, 2007.
[4] Ma C., Chen D.L., Bhole S.D., Boudreau G., Lee A., Biro E., “Microstructure and fracture characteristics of spot-welded DP600 steel” Materials Science and Engineering A, 485, 334-346, 2008.
[5] Personal communication with Inland Ispat co.
[6] Lindgren C., Sperle J.O., Jonsson M., “Fatigue strength of spot welded beams in high strength steels” Weld World, 37(1), 90–104, 1996.
[7] Holovenko O., Lenco M.G., Pastore E., Pinasco M.R., Matteis P., Scavino G., Firrao D., “Microstructural and mechanical characterization of welded joints on innovative high-strength steels” La Metallurgia Italiana, 3, 3-12, 2013.
[8] Harvath C.D., “The future revolution in automotive high strength steel usage, proc.” Great Design in Steel Conf., Michigan, 2004. [9] Pal T.K., Bhowmick K., “Resistance spot welding characteristics and high cycle fatigue behavior of DP780 steel sheet” ASM International, 21, 280-285, 2012.
[10] Speich G.R., “Dual-phase steels”, in: J.R. Davis et al. (eds.), ASM Handbook, 424- 429s, Ohio, 1990.
[11] CEN prEN 10338, “Cold rolled flat products of multiphase steels for cold forming - technical delivery conditions” Bruxelles, 2010.
[12] Ghanheri A., Shafyei A., Honarmand M., “Effects of inter-critical temperatures on martensite morphology, volume fraction and mechanical properties of dual phase steels obtained from direct and continuous annealing cycles” Materials & Design, 62, 305–19, 2014.
[13] Farabi N., Chen D., Zhou Y., “Fatigue properties of laser welded dual-phase steel joints” Procedia Engineering, 2, 835–43, 2010.
[14] Committee on Automotive Applications. Advanced high strength steel (AHSS) Application Guidelines. Brussels: International Iron and Steel Institute; 2005.
[15] Sarwar M., Priestner R., “Influence of ferrite–martensite microstructural morphology on tensile properties of dual-phase steel” Journal of Materials Science, 31, 2091–5, 1996.
[16] Technical Transfer Dispatch #6—Body Structure Materials, ULSAB-AVC Consortium, 2001.
[18] Khan M.I., Kuntz M.L., Su P., Gerlich A., North T., Zhou Y., “Resistance and friction stir spot welding of DP600: a comparative study” Science and Technology of Welding and Joining, 12(2), 175-182, 2007.
[19] Shi G., Westgate S.A., “Optimizing welding conditions for TRIP steels” TWI bulletin, 2006.
[20] Ghosh P.K., Gupta P.C., Avtar R., Jha B.K., “Weldability of intercritical annealed dual-phase steel with the resistance spot welding process” Welding Journal, 70(1), 7-14, 1991.
[21] Riesner M., Sun X., Wu S., Hwang, H.Y., Low E., “Modeling and optimizing of structural joints in automotive applications” Proc. of the Int. Crashworthiness Conf., London, 2000.
[22] Sun X., Dong P., “Analysis of aluminum resistance spot welding processes using coupled finite element procedures” Welding Journal, 79(8), 215–221, 2000.
[23] Williams N.T., Parker J.D., “Review of resistance spot welding of steel sheets part 1 modelling and control of weld nugget formation” International Materials Reviews, 2, 45–75, 2004.
[24] Chien C.S., Kannatey E., Asibu J.R., “Investigation of monitoring systems for resistance spot welding” Welding Journal, 81, 195-199, 2002.
[25] Senkara J., Zhang H., Hu S.J., “Expulsion prediction in resistance spot welding” Welding Journal, 83, 123–132, 2004.
[26] Zhang H., “Expulsion and its influence on weld quality” Welding Research Supplement, 11, 373–380, 1999.
[28] Wang G., Barkey M.E., “Investigating the spot weld fatigue crack growth process using X-ray imaging” Welding Journal, 85, 84–90, 2006.
[29] Marya M., Gayden X.Q., “Development of requirements for resistance spot welding dual-phase (DP600) steels part 1-the causes of interfacial fracture” Welding Journal, 84, 172-182, 2005.
[30] El-Sayed M.E., Stawiarski T., Frutiger R., “Fatigue analysis of spot welded joints under variable amplitude load history” Engineering Fracture Mechanics, 55(3), 363–369, 1996.
[31] Gould J.E., Khurana S.P., Li T., “Prediction of microstructures when welding automotive advanced high-strength steels” Welding Journal, 85, 111–116, 2006.
[32] Easterling K., “Introduction to the Physical Metallurgy of Welding”, second ed., Butterworth Heinemann Ltd., Oxford, 1992.
[33] Gould J.E., Khurana S.P., Li T., “Prediction of microstructures when welding automotive advanced high-strength steels” Welding Journal, 85, 111–116, 2006.
[34] Tumuluru M. D., Great Designs in Steel Conference, T4-8, MI, 2006.
[35] Adams C. M., “Cooling rates and peak temperatures in fusion welding” Welding Journal, 37(5), 210–215, 1958.
[36] Li Z., Duan Y., Zhang M., Shi M., Zhu F., Zhang S., “Effects of quenching process on mechanical properties and microstructure of high strength steel” Journal of Wuhan University of Technology-Mater. Sci. Ed., 27(6), 1024-1028, 2012.
[37] Velasco F., Blanco G., Bautista A., Martínez M., “Effect of welding on local mechanical properties of stainless steels for concrete structures using universal hardness tests” Construction and Building Materials, 23(5), 1883-1891, 2009.
[38] Frydman S., Konat Ł., Pękalski G., “Structure and hardness changes in welded joints of Hardox steels” Archives of Civil and Mechanical Engineering, 8(4), 15-27, 2008.
[39] Ziemian C.W., Sharma M.M., Whaley D.E., “Effects of flashing and upset sequences on microstructure, hardness, and tensile properties of welded structural steel joints” Materials & Design, 33, 175-184, 2012.
[40] Ueji R., Fujii H., Cui L., Nishioka A., Kunishige K., Nogi K., “Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process” Materials Science and Engineering A, 423(1), 324-330, 2006.
[41] Güral A., Bostan., B; Özdemir A., “Heat treatment in two phase regions and its effect on microstructure and mechanical strength after welding of a low carbon steel” Materials & Design, 28(3), 897-903, 2007.
[42] Acarer M., Demir B., “An investigation of mechanical and metallurgical properties of explosive welded aluminum–dual phase steel” Materials Letters, 62(25), 4158-4160, 2008.
[43] Abdullah H.A., Siddiqui R.A., “Concurrent laser welding and annealing exploiting robotically manipulated optical fibers” Optics and lasers in engineering, 38(6), 473-484, 2002.
[44] Klobčar D., Tušek J., Taljat B., Kosec L., Pleterski M., “Aging of maraging steel welds during aluminium alloy die casting” Computational Materials Science, 44(2), 515-522, 2008.
[45] Li C., Wang Y., Zhang Z., Han B., Han T., “Influence of overlapping ratio on hardness and residual stress distributions in multi-track laser surface melting roller steel” Optics and Lasers in Engineering, 48(12), 1224-1230, 2010.
[46] Hayat F., Demir B., Acarer M., Aslanlar S., “Effect of weld time and weld current on the mechanical properties of resistance spot welded IF (DIN EN 10130-1999) steel” Kovove Materialy, 47, 11-17, 2009.
[47] Hayat, F., Demir B., Acarer M., “Tensile shear and microstructural properties of resistance spot welded low carbon Mn-Ni dual-phase steels” Metal Science and Heat Treatment, 49, 9-10, 484-489, 2007.
[48] Uzun F., Bilge A.N., “The effect of carbon content and submerged arc welding process on hardness of carbon steels” Journal for Foundations and Applications of Physics, 4(1),1-7,2017.
[49] Callister W. D., “Fundamentals of Materials Science and Engineering” John Wiley and Sons Ltd, 2004.
Elektrot Tipinin Nokta Direnç Kaynaklı DP600 Çeliğinin Mikroyapı ve Sertliğine Etkileri
Bu
çalışmada, elektrot tipinin DP çeliğinin nokta direnç kaynaklı birleşimlerinin
mikroyapı ve sertliği üzerindeki etkileri incelenmiştir. Ticari galvanizli DP
sac çeliği kullanılmıştır. Nokta direnç kaynağı (NDK), geometriye göre değişen
elektrot tiplerinde, sabit kaynak süresi, kaynak akımı ve kaynak basıncında
gerçekleştirilmiştir. Mikroyapı ve sertlik malzeme özellikleri ve özellikle ısı
girdisi olmak üzere kaynak parametrelerine bağlıdır. Isı girdisi, kaynak
şartları ve parametrelerinden kaynaklanmaktadır. Elektrot uç tipi NDK süresince
kaynak teması ve ısı transferini etkilemektedir. Sonuçlar, özellikle küresel
tip elektrotun düşük ısı girdisi meydana getirdiğini, dolayısıyla ısıdan
etkilenen bölgede sınırlı mikroyapı değişiminin olduğunu göstermiştir. Bu durum,
birleşimlerin özellikleri üzerinde pozitif etkiye sahiptir. DP600 çeliğinin
kimyasal bileşimine bağlı olarak kaynak bölgesinde genellikle daha sert fazlar
meydana geldiği görülmüştür.
[1] Kelkar A., Roth R., Clarl J., “Can aluminum be an economical alternative to steel” JOM, 53(8), 28–32, 2001.
[2] Khan M.I., Kuntz M.L., Biro E., Zhou Y. “Microstructure and mechanical properties of resistance spot welded advanced high strength steels” Materials Transactions, 49(7), 1629-1637, 2008.
[3] Long X., Khanna S.K., “Fatigue properties and failure characterization of spot welded high strength steel sheet” International Journal of Fatigue, 29, 879-886, 2007.
[4] Ma C., Chen D.L., Bhole S.D., Boudreau G., Lee A., Biro E., “Microstructure and fracture characteristics of spot-welded DP600 steel” Materials Science and Engineering A, 485, 334-346, 2008.
[5] Personal communication with Inland Ispat co.
[6] Lindgren C., Sperle J.O., Jonsson M., “Fatigue strength of spot welded beams in high strength steels” Weld World, 37(1), 90–104, 1996.
[7] Holovenko O., Lenco M.G., Pastore E., Pinasco M.R., Matteis P., Scavino G., Firrao D., “Microstructural and mechanical characterization of welded joints on innovative high-strength steels” La Metallurgia Italiana, 3, 3-12, 2013.
[8] Harvath C.D., “The future revolution in automotive high strength steel usage, proc.” Great Design in Steel Conf., Michigan, 2004. [9] Pal T.K., Bhowmick K., “Resistance spot welding characteristics and high cycle fatigue behavior of DP780 steel sheet” ASM International, 21, 280-285, 2012.
[10] Speich G.R., “Dual-phase steels”, in: J.R. Davis et al. (eds.), ASM Handbook, 424- 429s, Ohio, 1990.
[11] CEN prEN 10338, “Cold rolled flat products of multiphase steels for cold forming - technical delivery conditions” Bruxelles, 2010.
[12] Ghanheri A., Shafyei A., Honarmand M., “Effects of inter-critical temperatures on martensite morphology, volume fraction and mechanical properties of dual phase steels obtained from direct and continuous annealing cycles” Materials & Design, 62, 305–19, 2014.
[13] Farabi N., Chen D., Zhou Y., “Fatigue properties of laser welded dual-phase steel joints” Procedia Engineering, 2, 835–43, 2010.
[14] Committee on Automotive Applications. Advanced high strength steel (AHSS) Application Guidelines. Brussels: International Iron and Steel Institute; 2005.
[15] Sarwar M., Priestner R., “Influence of ferrite–martensite microstructural morphology on tensile properties of dual-phase steel” Journal of Materials Science, 31, 2091–5, 1996.
[16] Technical Transfer Dispatch #6—Body Structure Materials, ULSAB-AVC Consortium, 2001.
[18] Khan M.I., Kuntz M.L., Su P., Gerlich A., North T., Zhou Y., “Resistance and friction stir spot welding of DP600: a comparative study” Science and Technology of Welding and Joining, 12(2), 175-182, 2007.
[19] Shi G., Westgate S.A., “Optimizing welding conditions for TRIP steels” TWI bulletin, 2006.
[20] Ghosh P.K., Gupta P.C., Avtar R., Jha B.K., “Weldability of intercritical annealed dual-phase steel with the resistance spot welding process” Welding Journal, 70(1), 7-14, 1991.
[21] Riesner M., Sun X., Wu S., Hwang, H.Y., Low E., “Modeling and optimizing of structural joints in automotive applications” Proc. of the Int. Crashworthiness Conf., London, 2000.
[22] Sun X., Dong P., “Analysis of aluminum resistance spot welding processes using coupled finite element procedures” Welding Journal, 79(8), 215–221, 2000.
[23] Williams N.T., Parker J.D., “Review of resistance spot welding of steel sheets part 1 modelling and control of weld nugget formation” International Materials Reviews, 2, 45–75, 2004.
[24] Chien C.S., Kannatey E., Asibu J.R., “Investigation of monitoring systems for resistance spot welding” Welding Journal, 81, 195-199, 2002.
[25] Senkara J., Zhang H., Hu S.J., “Expulsion prediction in resistance spot welding” Welding Journal, 83, 123–132, 2004.
[26] Zhang H., “Expulsion and its influence on weld quality” Welding Research Supplement, 11, 373–380, 1999.
[28] Wang G., Barkey M.E., “Investigating the spot weld fatigue crack growth process using X-ray imaging” Welding Journal, 85, 84–90, 2006.
[29] Marya M., Gayden X.Q., “Development of requirements for resistance spot welding dual-phase (DP600) steels part 1-the causes of interfacial fracture” Welding Journal, 84, 172-182, 2005.
[30] El-Sayed M.E., Stawiarski T., Frutiger R., “Fatigue analysis of spot welded joints under variable amplitude load history” Engineering Fracture Mechanics, 55(3), 363–369, 1996.
[31] Gould J.E., Khurana S.P., Li T., “Prediction of microstructures when welding automotive advanced high-strength steels” Welding Journal, 85, 111–116, 2006.
[32] Easterling K., “Introduction to the Physical Metallurgy of Welding”, second ed., Butterworth Heinemann Ltd., Oxford, 1992.
[33] Gould J.E., Khurana S.P., Li T., “Prediction of microstructures when welding automotive advanced high-strength steels” Welding Journal, 85, 111–116, 2006.
[34] Tumuluru M. D., Great Designs in Steel Conference, T4-8, MI, 2006.
[35] Adams C. M., “Cooling rates and peak temperatures in fusion welding” Welding Journal, 37(5), 210–215, 1958.
[36] Li Z., Duan Y., Zhang M., Shi M., Zhu F., Zhang S., “Effects of quenching process on mechanical properties and microstructure of high strength steel” Journal of Wuhan University of Technology-Mater. Sci. Ed., 27(6), 1024-1028, 2012.
[37] Velasco F., Blanco G., Bautista A., Martínez M., “Effect of welding on local mechanical properties of stainless steels for concrete structures using universal hardness tests” Construction and Building Materials, 23(5), 1883-1891, 2009.
[38] Frydman S., Konat Ł., Pękalski G., “Structure and hardness changes in welded joints of Hardox steels” Archives of Civil and Mechanical Engineering, 8(4), 15-27, 2008.
[39] Ziemian C.W., Sharma M.M., Whaley D.E., “Effects of flashing and upset sequences on microstructure, hardness, and tensile properties of welded structural steel joints” Materials & Design, 33, 175-184, 2012.
[40] Ueji R., Fujii H., Cui L., Nishioka A., Kunishige K., Nogi K., “Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process” Materials Science and Engineering A, 423(1), 324-330, 2006.
[41] Güral A., Bostan., B; Özdemir A., “Heat treatment in two phase regions and its effect on microstructure and mechanical strength after welding of a low carbon steel” Materials & Design, 28(3), 897-903, 2007.
[42] Acarer M., Demir B., “An investigation of mechanical and metallurgical properties of explosive welded aluminum–dual phase steel” Materials Letters, 62(25), 4158-4160, 2008.
[43] Abdullah H.A., Siddiqui R.A., “Concurrent laser welding and annealing exploiting robotically manipulated optical fibers” Optics and lasers in engineering, 38(6), 473-484, 2002.
[44] Klobčar D., Tušek J., Taljat B., Kosec L., Pleterski M., “Aging of maraging steel welds during aluminium alloy die casting” Computational Materials Science, 44(2), 515-522, 2008.
[45] Li C., Wang Y., Zhang Z., Han B., Han T., “Influence of overlapping ratio on hardness and residual stress distributions in multi-track laser surface melting roller steel” Optics and Lasers in Engineering, 48(12), 1224-1230, 2010.
[46] Hayat F., Demir B., Acarer M., Aslanlar S., “Effect of weld time and weld current on the mechanical properties of resistance spot welded IF (DIN EN 10130-1999) steel” Kovove Materialy, 47, 11-17, 2009.
[47] Hayat, F., Demir B., Acarer M., “Tensile shear and microstructural properties of resistance spot welded low carbon Mn-Ni dual-phase steels” Metal Science and Heat Treatment, 49, 9-10, 484-489, 2007.
[48] Uzun F., Bilge A.N., “The effect of carbon content and submerged arc welding process on hardness of carbon steels” Journal for Foundations and Applications of Physics, 4(1),1-7,2017.
[49] Callister W. D., “Fundamentals of Materials Science and Engineering” John Wiley and Sons Ltd, 2004.
Demir, B., Elitaş, M., & Karakuş, H. (2020). The Effects of the Electrode Type on Microstructure and Hardness of the RSW of DP600 Steel. Nevşehir Bilim Ve Teknoloji Dergisi, 9(2), 181-193. https://doi.org/10.17100/nevbiltek.403822
AMA
Demir B, Elitaş M, Karakuş H. The Effects of the Electrode Type on Microstructure and Hardness of the RSW of DP600 Steel. Nevşehir Bilim ve Teknoloji Dergisi. Aralık 2020;9(2):181-193. doi:10.17100/nevbiltek.403822
Chicago
Demir, Bilge, Muhammed Elitaş, ve Hüseyin Karakuş. “The Effects of the Electrode Type on Microstructure and Hardness of the RSW of DP600 Steel”. Nevşehir Bilim Ve Teknoloji Dergisi 9, sy. 2 (Aralık 2020): 181-93. https://doi.org/10.17100/nevbiltek.403822.
EndNote
Demir B, Elitaş M, Karakuş H (01 Aralık 2020) The Effects of the Electrode Type on Microstructure and Hardness of the RSW of DP600 Steel. Nevşehir Bilim ve Teknoloji Dergisi 9 2 181–193.
IEEE
B. Demir, M. Elitaş, ve H. Karakuş, “The Effects of the Electrode Type on Microstructure and Hardness of the RSW of DP600 Steel”, Nevşehir Bilim ve Teknoloji Dergisi, c. 9, sy. 2, ss. 181–193, 2020, doi: 10.17100/nevbiltek.403822.
ISNAD
Demir, Bilge vd. “The Effects of the Electrode Type on Microstructure and Hardness of the RSW of DP600 Steel”. Nevşehir Bilim ve Teknoloji Dergisi 9/2 (Aralık 2020), 181-193. https://doi.org/10.17100/nevbiltek.403822.
JAMA
Demir B, Elitaş M, Karakuş H. The Effects of the Electrode Type on Microstructure and Hardness of the RSW of DP600 Steel. Nevşehir Bilim ve Teknoloji Dergisi. 2020;9:181–193.
MLA
Demir, Bilge vd. “The Effects of the Electrode Type on Microstructure and Hardness of the RSW of DP600 Steel”. Nevşehir Bilim Ve Teknoloji Dergisi, c. 9, sy. 2, 2020, ss. 181-93, doi:10.17100/nevbiltek.403822.
Vancouver
Demir B, Elitaş M, Karakuş H. The Effects of the Electrode Type on Microstructure and Hardness of the RSW of DP600 Steel. Nevşehir Bilim ve Teknoloji Dergisi. 2020;9(2):181-93.