Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 25 Sayı: 6, 1376 - 1385, 31.12.2021
https://doi.org/10.16984/saufenbilder.971191

Öz

Destekleyen Kurum

Sivas Cumhuriyet Üniversitesi CÜBAP

Proje Numarası

YMYO-005

Kaynakça

  • [1] E. Chiellini and R. Solaro, “Biodegradable polymeric materials,” Advanced Materials, vol. 8, pp. 305-313, 1996.
  • [2] M.T. Taghizadeh and N. Sabouri, “Biodegradation behaviors and water adsorption of poly(vinyl alcohol)/starch/carboxymethyl cellulose /clay nanocomposites,” International Nano Letters, vol. 51, pp. 1-8, 2013.
  • [3] Y Sun, Z. Shao, P. Hu, Y. Liu and T. Yu, “Hydrogen bonds in silk fibroin‐poly(acrylonitrile‐co‐methyl acrylate) blends: FT–IR study,” Journal of Polymer Science Part B: Polymer Physics, vol. 35, pp. 1405-1414, 1997.
  • [4] N. Reyes, I Rivas-Ruiz, R. Domínguez-Espinosa and S. Solís, “Influence of immobilization parameters on endopolygalacturonase productivity by hybrid Aspergillus sp. HL entrapped in calcium alginate,” Biochemical Engineering Journal, vol. 32, pp. 43–48, 2006.
  • [5] B.L. Seal, T.C. Otero and A. Panitch, “Polymeric biomaterials for tissue and organ regeneration,” Materials Science and Engineering, vol. 34, pp. 147–230, 2001.
  • [6] M.R. Rasmussen, T. Snabe and L.H. Pedersen, “Numerical modelling of insulin and amyloglucosidase release from swelling Ca-alginate beads,” Journal of Controlled Release, vol. 91, pp. 395–405, 2003.
  • [7] A. Nochos, D. Douroumis and N. Bouropoulos, “In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads,” Carbohydrate Polymer, vol. 74, pp. 451–457, 2008.
  • [8] N. Pekel, F. Yoshii, T. Kume and O. Güven, “Radiation crosslinking of biodegradable hydroxypropylmethylcellulose,” Carbohydrate Polymer, vol. 55, pp. 139-147, 2004.
  • [9] A. Mujtabaa and K. Kohli, “In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil,” International Journal of Biological Macromolecules, vol. 89, pp. 434–441, 2016.
  • [10] O.C. Okeke and J.S. Boateng, “Composite HPMC and sodium alginate based buccal formulations for nicotine replacement therapy,” International Journal of Biological Macromolecules, vol. 91 pp. 31–44, 2016.
  • [11] S.K. Yadava, J.S. Patil, V.J. Mokale and J.B. Naik, “Sodium alginate/HPMC/liquid paraffin emulsified (o/w) gel beads,by factorial design approach; and in vitro analysis,” Journal of Sol-Gel Science and Technology, vol.71, pp. 60–68, 2014.
  • [12] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli and J.M. Kenny, “Biodegradable polymer matrix nanocomposites for tissue engineering: A review,” Polymer Degradation and Stability, vol. 95, pp. 2126 -2146, 2010.
  • [13] Y-H. Yun, J-W. Yun, S-Do Yoon and H-S. Byun, “Physical properties and photocatalytic activity of chitosan-based nanocomposites added titanium oxide nanoparticles.,” Macromolecular Research, vol. 24, pp. 51-59, 2016.
  • [14] H.W. Kim, A.A. Abdala and C.W. Macosko, “Graphene/ Polymer nanocomposites,” Macromolecules, vol. 43, pp. 6515-6530, 2010.
  • [15] Z. Isik, Z. Bilici, S. Konen Adiguzel, H.C. Yatmaz and N. Dizge, “Entrapment of TiO2 and ZnO powders in alginate beads: Photocatalytic and reuse efficiencies for dye solutions and toxicity effect for DNA damage,” Environmental Technology & Innovation, vol. 14, pp. 100358, 2019.
  • [16] M. Thomas, T.S. Natarajan, M.U.D. Sheikh, M. Bano and F. Khan, “Self-organized graphene oxide and TiO2 nanoparticles incorporated alginate/ carboxymethyl cellulose nanocomposites with efficient photocatalytic activity under direct sunlight,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 346, pp. 113-125, 2017.
  • [17] A.L.I. Olad, S. Behboudi and A. Entezami, “Preparation, characterization and photocatalytic activity of TiO2/ polyaniline core-shell nanocomposite,” Bulletin of Materials Science, vol. 35, pp. 801–809, 2012.
  • [18] J. Bouclé, S. Chyla, M.S.P. Shaffer, J.R. Durrant, D.D.C. Bradley and J. Nelson, “Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods,” Advanced Functional Materials, vol.18, pp. 622–633, 2008.
  • [19] S.S. Mano, K. Kanehira, S. Sonezaki and A. Taniguchi, “Effect of polyethylene glycol modification of TiO2 nanoparticles on cytotoxicity and gene expressions in human cell lines,” International Journal of Molecular Sciences, vol. 13, pp. 3703–3717, 2012.
  • [20] S. Chaudhari, T. Shaikh and P. Pandey, “Review on polymer TiO2 nanocomposites,” International Journal of Engineering Research and Applications, vol. 3, pp. 1386–1391, 2013.
  • [21] S. Mallakpour and A. Barati, “Optically active poly(amide-imide)/ TiO2 bionanocomposites containing L-isoleucine amino acid moieties: synthesis, nanostructure and properties,” Polymer-Plastics Technology and Engineering, vol. 52, pp. 997–1006, 2013.
  • [22] H.M.C. Azeredo and K. W. Waldron, “Crosslinking in polysaccharide and protein films and coatings for food contact-A review. Trends in,” Food Science & Technology, vol. 52, pp.109-122, 2016.
  • [23] Y. Hu, S. Zhang, D. Han, Z. Ding, S. Zeng and X. Xiao, “Construction and evaluation of the hydroxypropyl methyl cellulose-sodium alginate composite hydrogel system for sustained drug release,” Journal of Polymer Research, vol. 25, pp.148, 2018.
  • [24] Z. Liu, J.Li, S. Nie, H. Liu, P. Ding and W. Pan, “Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin,” International Journal of Pharmaceutics, vol. 315, pp. 12–17, 2006.
  • [25] A. Mujtaba, M. Ali and K. Kohli, “Statistical optimization and characterization ofpH-independent extended-release drug delivery ofcefpodoxime proxetil using Box–Behnken design”, Chemical Engineering Research and Design, vol. 92, pp. 156–165, 2014.
  • [26] X. Shao, H. Sun, R. Zhou, B. Zhao, J. Shi, R. Jiang and Y. Dong, “Effect of bovine bone collagen and nano-TiO2 on the properties of hydroxypropyl methylcellulose films,” International Journal of Biological Macromolecules, vol. 158, pp. 937–944, 2020.
  • [27] P. Chen and X. Zhang, “Fabrication of Pt/TiO2 Nanocomposites in Alginate and Their Applications to the Degradation of Phenol and Methylene Blue in Aqueous Solutions,” Clean, vol. 36 no. (5–6), pp. 507 – 511, 2008.
  • [28] K. Mallikarjuna Reddy, M. Sairam, V. Ramesh Babu, M. C. S. Subha, K. Chowdoji Rao and T. M. Aminabhavi, “Sodium alginate-TiO2 mixed matrix membranes for pervaporation dehydration of tetrahydrofuran and isopropanol,” Designed Monomers and Polymers, vol. 10, no. 4, pp. 297–309, 2007.
  • [29] L.M. Pedro, G.D. Bloisi and D.F.S. Petri “Hydroxypropylmethyl cellulose films crosslinked with citric acid for control release of nicotine,” Cellulose, vol. 22, pp. 3907–3918, 2015.
  • [30] F. Kurşun, “Grafting of itaconic acid on sodium alginate and use of graft copolymer in drug delivery systems”, Kırıkkale University, Kırıkkale,Turkey, (2008).
  • [31] E. Kondolot Solak, “Preparation and characterization of IPN microspheres for controlled delivery of naproxen,” Journal of Biomaterials and Nanobiotechnology, vol. 2, pp. 445-453, 2011.
  • [32] B. YerriSwamy, C. Venkata Prasad, C.L.N. Reedy, B. Mallikarjuna, K. Chowdoji Rao and M.C.S. Subha, “Interpenetrating polymer network microspheres of hydroxypropyl methyl cellulose/poly (vinyl alcohol) for control release of ciprofloxacin hydrochloride,” Cellulose, vol. 18, pp. 349-357, 2011.
  • [33] C. Ding, M. Zhang and G. Li, “Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film,” Carbohydrate Polymer, vol. 119, pp. 194-201, 2015.
  • [34] S.T.M. Mruthyunjaya, B. Ramaraj and Siddaramaiah, “Thermal and morphological properties of SA/HPMC blends,” Journal of Applied Polymer Science, vol. 112, pp. 2235–2240, 2009.
  • [35] S. Kondaveeti, T.C. Damato, A.M. Carmona-Ribeiro, M.R. Sierakowski and D.F.S. Petri, “Sustainable hydroxypropyl methylcellulose /xyloglucan/gentamicin films with antimicrobial properties,” Carbohydrate Polymer, vol. 165, pp. 285-293, 2017.
  • [36] T. Padma, T. Subba Rao and B.N.K. Chandra, “Preparation, characterization and dielectric properties of sodium alginate/titanium dioxide composite membranes,” SN Applied Sciences, vol. 1:75, 2019.
  • [37] Y. Tai, J. Qian, Y. Zhang and J. Huang, “Study of surface modification of nano-SiO2 with macromolecular coupling agent,” Chemical Engineering Journal, vol. 141, pp. 354-361, 2008.
  • [38] K. Tomihata and Y. Ikada, “Crosslinking of hyaluronin acid with water-soluble carbodiimide,” Journal of Biomedical Materials Research; 37: 243-251, 1997.

Preparation and Characterization of Biocompatible Membranes Based on TiO2 Nanoparticul

Yıl 2021, Cilt: 25 Sayı: 6, 1376 - 1385, 31.12.2021
https://doi.org/10.16984/saufenbilder.971191

Öz

In this study, biocompatible composite membranes of sodium alginate/hydroxypropyl methylcellulose (NaAlg/HPMC) based on nano-titanium dioxide (n-TiO2) were prepared. Regarding the preparation processes of these membranes, the amount of citric acid [5%, 15%, 30% (w/w)] added to the NaAlg/HPMC blend, the crosslinker type (glutaraldehyde, acetone/water with glutaraldehyde, CaCl2), and the amount of n-TiO2 [5%, 15%, 20% (w/w)] were studied and optimum conditions were determined. When the equilibrium swelling values were examined, it was observed that the one with the least swelling was the CaCl2 crosslinked membrane. Fourier Transform Infrared (FTIR) Spectroscopy, Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) were used to characterize the modified crosslinked membranes. The FTIR analysis results showed the formation of hydrogen bonds between the hydroxyl groups of the HPMC and NaAlg polymer chains. The DSC analysis showed the existence of single glass transition temperature (Tg) which indicated the compatibility and physical interaction between the NaAlg and HPMC polymer chains for NaAlg / HPMC mixtures.

Proje Numarası

YMYO-005

Kaynakça

  • [1] E. Chiellini and R. Solaro, “Biodegradable polymeric materials,” Advanced Materials, vol. 8, pp. 305-313, 1996.
  • [2] M.T. Taghizadeh and N. Sabouri, “Biodegradation behaviors and water adsorption of poly(vinyl alcohol)/starch/carboxymethyl cellulose /clay nanocomposites,” International Nano Letters, vol. 51, pp. 1-8, 2013.
  • [3] Y Sun, Z. Shao, P. Hu, Y. Liu and T. Yu, “Hydrogen bonds in silk fibroin‐poly(acrylonitrile‐co‐methyl acrylate) blends: FT–IR study,” Journal of Polymer Science Part B: Polymer Physics, vol. 35, pp. 1405-1414, 1997.
  • [4] N. Reyes, I Rivas-Ruiz, R. Domínguez-Espinosa and S. Solís, “Influence of immobilization parameters on endopolygalacturonase productivity by hybrid Aspergillus sp. HL entrapped in calcium alginate,” Biochemical Engineering Journal, vol. 32, pp. 43–48, 2006.
  • [5] B.L. Seal, T.C. Otero and A. Panitch, “Polymeric biomaterials for tissue and organ regeneration,” Materials Science and Engineering, vol. 34, pp. 147–230, 2001.
  • [6] M.R. Rasmussen, T. Snabe and L.H. Pedersen, “Numerical modelling of insulin and amyloglucosidase release from swelling Ca-alginate beads,” Journal of Controlled Release, vol. 91, pp. 395–405, 2003.
  • [7] A. Nochos, D. Douroumis and N. Bouropoulos, “In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads,” Carbohydrate Polymer, vol. 74, pp. 451–457, 2008.
  • [8] N. Pekel, F. Yoshii, T. Kume and O. Güven, “Radiation crosslinking of biodegradable hydroxypropylmethylcellulose,” Carbohydrate Polymer, vol. 55, pp. 139-147, 2004.
  • [9] A. Mujtabaa and K. Kohli, “In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil,” International Journal of Biological Macromolecules, vol. 89, pp. 434–441, 2016.
  • [10] O.C. Okeke and J.S. Boateng, “Composite HPMC and sodium alginate based buccal formulations for nicotine replacement therapy,” International Journal of Biological Macromolecules, vol. 91 pp. 31–44, 2016.
  • [11] S.K. Yadava, J.S. Patil, V.J. Mokale and J.B. Naik, “Sodium alginate/HPMC/liquid paraffin emulsified (o/w) gel beads,by factorial design approach; and in vitro analysis,” Journal of Sol-Gel Science and Technology, vol.71, pp. 60–68, 2014.
  • [12] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli and J.M. Kenny, “Biodegradable polymer matrix nanocomposites for tissue engineering: A review,” Polymer Degradation and Stability, vol. 95, pp. 2126 -2146, 2010.
  • [13] Y-H. Yun, J-W. Yun, S-Do Yoon and H-S. Byun, “Physical properties and photocatalytic activity of chitosan-based nanocomposites added titanium oxide nanoparticles.,” Macromolecular Research, vol. 24, pp. 51-59, 2016.
  • [14] H.W. Kim, A.A. Abdala and C.W. Macosko, “Graphene/ Polymer nanocomposites,” Macromolecules, vol. 43, pp. 6515-6530, 2010.
  • [15] Z. Isik, Z. Bilici, S. Konen Adiguzel, H.C. Yatmaz and N. Dizge, “Entrapment of TiO2 and ZnO powders in alginate beads: Photocatalytic and reuse efficiencies for dye solutions and toxicity effect for DNA damage,” Environmental Technology & Innovation, vol. 14, pp. 100358, 2019.
  • [16] M. Thomas, T.S. Natarajan, M.U.D. Sheikh, M. Bano and F. Khan, “Self-organized graphene oxide and TiO2 nanoparticles incorporated alginate/ carboxymethyl cellulose nanocomposites with efficient photocatalytic activity under direct sunlight,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 346, pp. 113-125, 2017.
  • [17] A.L.I. Olad, S. Behboudi and A. Entezami, “Preparation, characterization and photocatalytic activity of TiO2/ polyaniline core-shell nanocomposite,” Bulletin of Materials Science, vol. 35, pp. 801–809, 2012.
  • [18] J. Bouclé, S. Chyla, M.S.P. Shaffer, J.R. Durrant, D.D.C. Bradley and J. Nelson, “Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods,” Advanced Functional Materials, vol.18, pp. 622–633, 2008.
  • [19] S.S. Mano, K. Kanehira, S. Sonezaki and A. Taniguchi, “Effect of polyethylene glycol modification of TiO2 nanoparticles on cytotoxicity and gene expressions in human cell lines,” International Journal of Molecular Sciences, vol. 13, pp. 3703–3717, 2012.
  • [20] S. Chaudhari, T. Shaikh and P. Pandey, “Review on polymer TiO2 nanocomposites,” International Journal of Engineering Research and Applications, vol. 3, pp. 1386–1391, 2013.
  • [21] S. Mallakpour and A. Barati, “Optically active poly(amide-imide)/ TiO2 bionanocomposites containing L-isoleucine amino acid moieties: synthesis, nanostructure and properties,” Polymer-Plastics Technology and Engineering, vol. 52, pp. 997–1006, 2013.
  • [22] H.M.C. Azeredo and K. W. Waldron, “Crosslinking in polysaccharide and protein films and coatings for food contact-A review. Trends in,” Food Science & Technology, vol. 52, pp.109-122, 2016.
  • [23] Y. Hu, S. Zhang, D. Han, Z. Ding, S. Zeng and X. Xiao, “Construction and evaluation of the hydroxypropyl methyl cellulose-sodium alginate composite hydrogel system for sustained drug release,” Journal of Polymer Research, vol. 25, pp.148, 2018.
  • [24] Z. Liu, J.Li, S. Nie, H. Liu, P. Ding and W. Pan, “Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin,” International Journal of Pharmaceutics, vol. 315, pp. 12–17, 2006.
  • [25] A. Mujtaba, M. Ali and K. Kohli, “Statistical optimization and characterization ofpH-independent extended-release drug delivery ofcefpodoxime proxetil using Box–Behnken design”, Chemical Engineering Research and Design, vol. 92, pp. 156–165, 2014.
  • [26] X. Shao, H. Sun, R. Zhou, B. Zhao, J. Shi, R. Jiang and Y. Dong, “Effect of bovine bone collagen and nano-TiO2 on the properties of hydroxypropyl methylcellulose films,” International Journal of Biological Macromolecules, vol. 158, pp. 937–944, 2020.
  • [27] P. Chen and X. Zhang, “Fabrication of Pt/TiO2 Nanocomposites in Alginate and Their Applications to the Degradation of Phenol and Methylene Blue in Aqueous Solutions,” Clean, vol. 36 no. (5–6), pp. 507 – 511, 2008.
  • [28] K. Mallikarjuna Reddy, M. Sairam, V. Ramesh Babu, M. C. S. Subha, K. Chowdoji Rao and T. M. Aminabhavi, “Sodium alginate-TiO2 mixed matrix membranes for pervaporation dehydration of tetrahydrofuran and isopropanol,” Designed Monomers and Polymers, vol. 10, no. 4, pp. 297–309, 2007.
  • [29] L.M. Pedro, G.D. Bloisi and D.F.S. Petri “Hydroxypropylmethyl cellulose films crosslinked with citric acid for control release of nicotine,” Cellulose, vol. 22, pp. 3907–3918, 2015.
  • [30] F. Kurşun, “Grafting of itaconic acid on sodium alginate and use of graft copolymer in drug delivery systems”, Kırıkkale University, Kırıkkale,Turkey, (2008).
  • [31] E. Kondolot Solak, “Preparation and characterization of IPN microspheres for controlled delivery of naproxen,” Journal of Biomaterials and Nanobiotechnology, vol. 2, pp. 445-453, 2011.
  • [32] B. YerriSwamy, C. Venkata Prasad, C.L.N. Reedy, B. Mallikarjuna, K. Chowdoji Rao and M.C.S. Subha, “Interpenetrating polymer network microspheres of hydroxypropyl methyl cellulose/poly (vinyl alcohol) for control release of ciprofloxacin hydrochloride,” Cellulose, vol. 18, pp. 349-357, 2011.
  • [33] C. Ding, M. Zhang and G. Li, “Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film,” Carbohydrate Polymer, vol. 119, pp. 194-201, 2015.
  • [34] S.T.M. Mruthyunjaya, B. Ramaraj and Siddaramaiah, “Thermal and morphological properties of SA/HPMC blends,” Journal of Applied Polymer Science, vol. 112, pp. 2235–2240, 2009.
  • [35] S. Kondaveeti, T.C. Damato, A.M. Carmona-Ribeiro, M.R. Sierakowski and D.F.S. Petri, “Sustainable hydroxypropyl methylcellulose /xyloglucan/gentamicin films with antimicrobial properties,” Carbohydrate Polymer, vol. 165, pp. 285-293, 2017.
  • [36] T. Padma, T. Subba Rao and B.N.K. Chandra, “Preparation, characterization and dielectric properties of sodium alginate/titanium dioxide composite membranes,” SN Applied Sciences, vol. 1:75, 2019.
  • [37] Y. Tai, J. Qian, Y. Zhang and J. Huang, “Study of surface modification of nano-SiO2 with macromolecular coupling agent,” Chemical Engineering Journal, vol. 141, pp. 354-361, 2008.
  • [38] K. Tomihata and Y. Ikada, “Crosslinking of hyaluronin acid with water-soluble carbodiimide,” Journal of Biomedical Materials Research; 37: 243-251, 1997.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Gülşen Taşkın Çakıcı 0000-0001-7564-9777

Proje Numarası YMYO-005
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 13 Temmuz 2021
Kabul Tarihi 1 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 6

Kaynak Göster

APA Taşkın Çakıcı, G. (2021). Preparation and Characterization of Biocompatible Membranes Based on TiO2 Nanoparticul. Sakarya University Journal of Science, 25(6), 1376-1385. https://doi.org/10.16984/saufenbilder.971191
AMA Taşkın Çakıcı G. Preparation and Characterization of Biocompatible Membranes Based on TiO2 Nanoparticul. SAUJS. Aralık 2021;25(6):1376-1385. doi:10.16984/saufenbilder.971191
Chicago Taşkın Çakıcı, Gülşen. “Preparation and Characterization of Biocompatible Membranes Based on TiO2 Nanoparticul”. Sakarya University Journal of Science 25, sy. 6 (Aralık 2021): 1376-85. https://doi.org/10.16984/saufenbilder.971191.
EndNote Taşkın Çakıcı G (01 Aralık 2021) Preparation and Characterization of Biocompatible Membranes Based on TiO2 Nanoparticul. Sakarya University Journal of Science 25 6 1376–1385.
IEEE G. Taşkın Çakıcı, “Preparation and Characterization of Biocompatible Membranes Based on TiO2 Nanoparticul”, SAUJS, c. 25, sy. 6, ss. 1376–1385, 2021, doi: 10.16984/saufenbilder.971191.
ISNAD Taşkın Çakıcı, Gülşen. “Preparation and Characterization of Biocompatible Membranes Based on TiO2 Nanoparticul”. Sakarya University Journal of Science 25/6 (Aralık 2021), 1376-1385. https://doi.org/10.16984/saufenbilder.971191.
JAMA Taşkın Çakıcı G. Preparation and Characterization of Biocompatible Membranes Based on TiO2 Nanoparticul. SAUJS. 2021;25:1376–1385.
MLA Taşkın Çakıcı, Gülşen. “Preparation and Characterization of Biocompatible Membranes Based on TiO2 Nanoparticul”. Sakarya University Journal of Science, c. 25, sy. 6, 2021, ss. 1376-85, doi:10.16984/saufenbilder.971191.
Vancouver Taşkın Çakıcı G. Preparation and Characterization of Biocompatible Membranes Based on TiO2 Nanoparticul. SAUJS. 2021;25(6):1376-85.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.