Araştırma Makalesi
BibTex RIS Kaynak Göster

New Integrated and Differentiated Sequence Spaces $\int{b_{p}^{r,s}}$ and $d\,b_{p}^{r,s}$

Yıl 2024, Cilt: 28 Sayı: 5, 1059 - 1069, 25.10.2024

Öz

In this work, we construct new sequence spaces by combining the integrated and differentiated sequence spaces with the binomial matrix. Firstly, we provide information about basic matters such as sequence spaces and matrix domain. Subsequently we briefly summarize some sequence spaces generated by the binomial matrix. Thereafter, we define the integrated and differentiated sequence spaces and establish the new sequence spaces. Afterwards, we examine some properties and the inclusion relations of these new sequence spaces. We also determine the α, β and γ-duals of the integrated and differentiated sequence spaces. Finally, we characterize some matrix classes associated with the new sequence spaces.

Kaynakça

  • B. Choudhary, S. Nanda, Functional Analysis with Applications. New Delhi: Wiley, 1989.
  • A. Wilansky, Summability Through Functional Analysis. Amsterdam: North-Holland mathematics studies, 1984.
  • G. Goes, S. Goes, “Sequences of Bounded Variation and Sequences of Fourier Coefficients. I”, Mathematische Zeitschrift, 118, pp. 93–102, 1970.
  • M. Kirişci, “Integrated and Differentiated Sequence Spaces”, Journal Nonlinear Analysis and Application, 1, pp. 2-16, 2015.
  • M. Kirişci, “Reisz Type Integrated and Differentiated Sequence Spaces”, Bulletin of Mathematical Analysis and Applications, 7, 2, pp. 14-27, 2015.
  • M. Kirişci, “Integrated and Differentiated Sequence Spaces and Weighted Mean”, Journal of Advances in Mathematics and Computer Science, 29, 1, pp. 1-11, 2018.
  • M. C. Bisgin, “The Binomial Sequence Spaces of Nonabsolute Type”, Journal Of Inequalities and Applications, 309, 2016.
  • M. C. Bisgin, “The Binomial Sequence Spaces Which Include the Spaces l_p and l_∞ and Geometric Properties”, Journal of Inequalities and Applications, 304, 2016.
  • M. C. Bişgin, “A Note on the Sequence Space b_p^(r,s) (G)”, Cumhuriyet Science Journal, vol. 38, 4, pp. 11-25, 2017.
  • A. Sönmez, “Some Notes on the New Sequence Space b_p^(r,s) (D)”, Gazi University Journal of Science, vol. 33, 2, pp. 476-490, 2020.
  • M. Stieglitz, H. Tietz, “Matrixtransformationen von Folgenräumen Eine Ergebnisübersicht”, Mathematische Zeitschrift. vol, 154, pp. 1–16, 1977.
Yıl 2024, Cilt: 28 Sayı: 5, 1059 - 1069, 25.10.2024

Öz

Kaynakça

  • B. Choudhary, S. Nanda, Functional Analysis with Applications. New Delhi: Wiley, 1989.
  • A. Wilansky, Summability Through Functional Analysis. Amsterdam: North-Holland mathematics studies, 1984.
  • G. Goes, S. Goes, “Sequences of Bounded Variation and Sequences of Fourier Coefficients. I”, Mathematische Zeitschrift, 118, pp. 93–102, 1970.
  • M. Kirişci, “Integrated and Differentiated Sequence Spaces”, Journal Nonlinear Analysis and Application, 1, pp. 2-16, 2015.
  • M. Kirişci, “Reisz Type Integrated and Differentiated Sequence Spaces”, Bulletin of Mathematical Analysis and Applications, 7, 2, pp. 14-27, 2015.
  • M. Kirişci, “Integrated and Differentiated Sequence Spaces and Weighted Mean”, Journal of Advances in Mathematics and Computer Science, 29, 1, pp. 1-11, 2018.
  • M. C. Bisgin, “The Binomial Sequence Spaces of Nonabsolute Type”, Journal Of Inequalities and Applications, 309, 2016.
  • M. C. Bisgin, “The Binomial Sequence Spaces Which Include the Spaces l_p and l_∞ and Geometric Properties”, Journal of Inequalities and Applications, 304, 2016.
  • M. C. Bişgin, “A Note on the Sequence Space b_p^(r,s) (G)”, Cumhuriyet Science Journal, vol. 38, 4, pp. 11-25, 2017.
  • A. Sönmez, “Some Notes on the New Sequence Space b_p^(r,s) (D)”, Gazi University Journal of Science, vol. 33, 2, pp. 476-490, 2020.
  • M. Stieglitz, H. Tietz, “Matrixtransformationen von Folgenräumen Eine Ergebnisübersicht”, Mathematische Zeitschrift. vol, 154, pp. 1–16, 1977.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Kübra Topal 0000-0001-9267-5627

Erken Görünüm Tarihi 18 Ekim 2024
Yayımlanma Tarihi 25 Ekim 2024
Gönderilme Tarihi 7 Ağustos 2024
Kabul Tarihi 19 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 5

Kaynak Göster

APA Topal, K. (2024). New Integrated and Differentiated Sequence Spaces $\int{b_{p}^{r,s}}$ and $d\,b_{p}^{r,s}$. Sakarya University Journal of Science, 28(5), 1059-1069.
AMA Topal K. New Integrated and Differentiated Sequence Spaces $\int{b_{p}^{r,s}}$ and $d\,b_{p}^{r,s}$. SAUJS. Ekim 2024;28(5):1059-1069.
Chicago Topal, Kübra. “New Integrated and Differentiated Sequence Spaces $\int{b_{p}^{r,s}}$ and $d\,b_{p}^{r,s}$”. Sakarya University Journal of Science 28, sy. 5 (Ekim 2024): 1059-69.
EndNote Topal K (01 Ekim 2024) New Integrated and Differentiated Sequence Spaces $\int{b_{p}^{r,s}}$ and $d\,b_{p}^{r,s}$. Sakarya University Journal of Science 28 5 1059–1069.
IEEE K. Topal, “New Integrated and Differentiated Sequence Spaces $\int{b_{p}^{r,s}}$ and $d\,b_{p}^{r,s}$”, SAUJS, c. 28, sy. 5, ss. 1059–1069, 2024.
ISNAD Topal, Kübra. “New Integrated and Differentiated Sequence Spaces $\int{b_{p}^{r,s}}$ and $d\,b_{p}^{r,s}$”. Sakarya University Journal of Science 28/5 (Ekim 2024), 1059-1069.
JAMA Topal K. New Integrated and Differentiated Sequence Spaces $\int{b_{p}^{r,s}}$ and $d\,b_{p}^{r,s}$. SAUJS. 2024;28:1059–1069.
MLA Topal, Kübra. “New Integrated and Differentiated Sequence Spaces $\int{b_{p}^{r,s}}$ and $d\,b_{p}^{r,s}$”. Sakarya University Journal of Science, c. 28, sy. 5, 2024, ss. 1059-6.
Vancouver Topal K. New Integrated and Differentiated Sequence Spaces $\int{b_{p}^{r,s}}$ and $d\,b_{p}^{r,s}$. SAUJS. 2024;28(5):1059-6.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.