One of the basic model for interconnection networks is the $n$-dimensional hypercube graph $Q_n$ and the vertices of $Q_n$ are represented by all binary strings of length $n$. The Fibonacci cube $\Gamma_n$ of dimension $n$ is a subgraph of $Q_n$, where the vertices correspond to those without two consecutive 1s in their string representation. In this paper, we deal with the domination number and the total domination number of Fibonacci cubes. First we obtain upper bounds on the domination number of $\Gamma_n$ for $n\ge 13$. Then using these result we obtain upper bounds on the total domination number of $\Gamma_n$ for $n\ge 14$ and we see that these upper bounds improve the bounds given in [1].
Bölüm | Makaleler |
---|---|
Yazarlar | |
Yayımlanma Tarihi | 11 Ağustos 2017 |
Yayımlandığı Sayı | Yıl 2017 Cilt: 21 Sayı: 3 |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.