Yıl 2023,
Cilt: 41 Sayı: 1, 74 - 83, 14.03.2023
Gamze Arslan Şen
Müge Yılmaz
,
Emek Möröydor Derun
Kaynakça
- REFERENCES
- [1] Sari M, Kanturk A, Piskin S. Synthesis, crystal struc-ture and dehydration kinetics of NaB(OH)4·2H2O. Korean J Chem Eng 2008;25:1331–1337. [CrossRef]
- [2] Sari S, Senberber FT, Yildirim M, Kipcak AS, Yuksel SA, Derun EM. Lanthanum borate synthesis via the solid-state method from a La2O3 precursor: Electrical and optical properties. Mater Chem Phys 2017;200:196–203. [CrossRef]
- [3] DT. Howlite, Ca2SiB5O9(OH)5: Structure refinement and hydrogen bonding. Am Mineral 1988;73:1138–1144.
- [4] Finney JJ, Kumbasar I, Konnert JA, Clark JR. Crystal structure of the calcium silicoborate, howlite. Am Mineral 1970;55:716–728.
- [5] Gorelova LA, Krzhizhanovskaya MG, Bubnova RS. Thermal behavior of howlite, Ca2SiB5O9(OH)5. Glass Phys Chem 2017;43:611–614. [CrossRef]
- [6] Erdogan Y, Zeybek A, Sahin A, Demirbas A. Dehydration kinetics of howlite, ulexite, and tun-ellite using thermogravimetric data. Thermochim
Acta 1999;326:99–103. [CrossRef]
- [7] Woods WG. An introduction to boron: history, sources, uses, and chemistry. Environ Health Perspect 1994;102:5–11. [CrossRef]
- [8] Nazari A, Maghsoudpour A, Sanjayan JG. Characteristics of boroaluminosilicate geopolymers. Constr Build Mater 2014;70:262–268. [CrossRef]
- [9] Ekmekyapar A, Baysar A, Kunkul A. Dehydration kinetics of tincal and borax by thermal analysis. Ind Eng Chem Res 1997;36:3487–3490. [CrossRef]
- [10] Tunc M, Ersahan H, Yapıcı S, Colak S. Dehydration kinetics of ulexite from thermogravimetric data. J Therm Anal 1997;48:403–411. [CrossRef]
- [11] Figen AK, Yilmaz MS, Piskin S. Structural charac-terization and dehydration kinetics of Kırka inder-ite mineral: Application of non-isothermal
models. Mater Charact 2010;61:640–647. [CrossRef]
- [12] Yilmaz MS, Kanturk A, Piskin S. Study on the dehy-dration kinetics of tunellite using non-isothermal methods. Res Chem Intermed
2015;41:1893–1906.[CrossRef]
- [13] Yilmaz MS, Piskin S. Effect of heat treatment on the structural characteristics and dehydroxylation kinet-ics of the tunellite. J Chem Soc Pak
2012;34:526–532.
- [14] Senberber FT, Derun EM. Thermal kinetics and thermodynamics of the dehydration reaction of inyoite (Ca2B6O6(OH)10. 8H2O). Glass Phys
Chem 2020;46:64–71. [CrossRef]
- [15] Kipcak AS, Senberber FT, Derun EM, Tugrul N, Piskin S. Characterization and thermal dehydration kinetics of zinc borates synthesized from
zinc sul-fate and zinc chloride. Res Chem Intermed 2015;41: 9129–9143. [CrossRef]
- [16] Asensio MO, Yildirim M, Senberber FT, Kipcak AS, Derun EM. Thermal dehydration kinetics and char-acterization of synthesized potassium
borates. Res Chem Intermed 2016;42:4859–4878. [CrossRef]
- [17] Derun EM, Kipcak AS, Senberber FT, Yilmaz MS. Characterization and thermal dehydration kinet-ics of admontite mineral hydrothermally
syn-thesized from magnesium oxide and boric acid precursor. Res Chem Intermed 2015;41:853–866.[CrossRef]
- [18] Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature 1964;201:68–69. [CrossRef]
- [19] Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 1965;38:1881–1886.[CrossRef]
- [20] Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem 1957;29:1702–1706.[CrossRef]
- [21] Akahira T, Sunose T. Transactions of joint conven-tion of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22–31.
- [22] Piskin S. Hidrate bor minerallerinin termik özel-likleri. Doctoral Thesis. Istanbul: Istanbul Technical University; 1983. [Turkish]
- [23] White JE, Catallo WJ, Legendre BL. Biomass pyroly-sis kinetics: a comparative critical review with rel-evant agricultural residue case
studies. J Anal Appl Pyrolysis 2011;91:1–33. [CrossRef]
- [24] Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham AA, et al. Computational aspects of kinetic analysis: part A: the
ICTAC kinet-ics project-data, methods and results. Thermochim Acta 2000;355:125–143. [CrossRef]
- [25] Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for
perform-ing kinetic computations on thermal analysis data. Thermochim Acta 2011;520:1–19. [CrossRef]
Kinetics of thermal decomposition of howlite mineral at different heating rates
Yıl 2023,
Cilt: 41 Sayı: 1, 74 - 83, 14.03.2023
Gamze Arslan Şen
Müge Yılmaz
,
Emek Möröydor Derun
Öz
In this work, the thermal decomposition kinetics of howlite were investigated at different heating rates by using Coats–Redfern, Ozawa, and Kissinger–Akahira–Sunose kinetic models under non-isothermal conditions. The thermal decomposition of howlite occurred in two dehydroxylation stages. Results indicated that it decomposes in the first dehydroxylation stage at a very slow rate due to the higher thermal stability of the mineral. Kinetic parameters were determined using the above-mentioned models for all decomposition stages. The activation energies calculated from the Ozawa and Kissinger–Akahira–Sunose isoconversional methods fit well with each other, while the activation energies calculated with the Coats–Redfern method were different. It was also seen that the activation energy of the decomposition reaction changed with the degree of conversion, suggesting that the reaction mechanism is not single-step.
Kaynakça
- REFERENCES
- [1] Sari M, Kanturk A, Piskin S. Synthesis, crystal struc-ture and dehydration kinetics of NaB(OH)4·2H2O. Korean J Chem Eng 2008;25:1331–1337. [CrossRef]
- [2] Sari S, Senberber FT, Yildirim M, Kipcak AS, Yuksel SA, Derun EM. Lanthanum borate synthesis via the solid-state method from a La2O3 precursor: Electrical and optical properties. Mater Chem Phys 2017;200:196–203. [CrossRef]
- [3] DT. Howlite, Ca2SiB5O9(OH)5: Structure refinement and hydrogen bonding. Am Mineral 1988;73:1138–1144.
- [4] Finney JJ, Kumbasar I, Konnert JA, Clark JR. Crystal structure of the calcium silicoborate, howlite. Am Mineral 1970;55:716–728.
- [5] Gorelova LA, Krzhizhanovskaya MG, Bubnova RS. Thermal behavior of howlite, Ca2SiB5O9(OH)5. Glass Phys Chem 2017;43:611–614. [CrossRef]
- [6] Erdogan Y, Zeybek A, Sahin A, Demirbas A. Dehydration kinetics of howlite, ulexite, and tun-ellite using thermogravimetric data. Thermochim
Acta 1999;326:99–103. [CrossRef]
- [7] Woods WG. An introduction to boron: history, sources, uses, and chemistry. Environ Health Perspect 1994;102:5–11. [CrossRef]
- [8] Nazari A, Maghsoudpour A, Sanjayan JG. Characteristics of boroaluminosilicate geopolymers. Constr Build Mater 2014;70:262–268. [CrossRef]
- [9] Ekmekyapar A, Baysar A, Kunkul A. Dehydration kinetics of tincal and borax by thermal analysis. Ind Eng Chem Res 1997;36:3487–3490. [CrossRef]
- [10] Tunc M, Ersahan H, Yapıcı S, Colak S. Dehydration kinetics of ulexite from thermogravimetric data. J Therm Anal 1997;48:403–411. [CrossRef]
- [11] Figen AK, Yilmaz MS, Piskin S. Structural charac-terization and dehydration kinetics of Kırka inder-ite mineral: Application of non-isothermal
models. Mater Charact 2010;61:640–647. [CrossRef]
- [12] Yilmaz MS, Kanturk A, Piskin S. Study on the dehy-dration kinetics of tunellite using non-isothermal methods. Res Chem Intermed
2015;41:1893–1906.[CrossRef]
- [13] Yilmaz MS, Piskin S. Effect of heat treatment on the structural characteristics and dehydroxylation kinet-ics of the tunellite. J Chem Soc Pak
2012;34:526–532.
- [14] Senberber FT, Derun EM. Thermal kinetics and thermodynamics of the dehydration reaction of inyoite (Ca2B6O6(OH)10. 8H2O). Glass Phys
Chem 2020;46:64–71. [CrossRef]
- [15] Kipcak AS, Senberber FT, Derun EM, Tugrul N, Piskin S. Characterization and thermal dehydration kinetics of zinc borates synthesized from
zinc sul-fate and zinc chloride. Res Chem Intermed 2015;41: 9129–9143. [CrossRef]
- [16] Asensio MO, Yildirim M, Senberber FT, Kipcak AS, Derun EM. Thermal dehydration kinetics and char-acterization of synthesized potassium
borates. Res Chem Intermed 2016;42:4859–4878. [CrossRef]
- [17] Derun EM, Kipcak AS, Senberber FT, Yilmaz MS. Characterization and thermal dehydration kinet-ics of admontite mineral hydrothermally
syn-thesized from magnesium oxide and boric acid precursor. Res Chem Intermed 2015;41:853–866.[CrossRef]
- [18] Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature 1964;201:68–69. [CrossRef]
- [19] Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 1965;38:1881–1886.[CrossRef]
- [20] Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem 1957;29:1702–1706.[CrossRef]
- [21] Akahira T, Sunose T. Transactions of joint conven-tion of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22–31.
- [22] Piskin S. Hidrate bor minerallerinin termik özel-likleri. Doctoral Thesis. Istanbul: Istanbul Technical University; 1983. [Turkish]
- [23] White JE, Catallo WJ, Legendre BL. Biomass pyroly-sis kinetics: a comparative critical review with rel-evant agricultural residue case
studies. J Anal Appl Pyrolysis 2011;91:1–33. [CrossRef]
- [24] Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham AA, et al. Computational aspects of kinetic analysis: part A: the
ICTAC kinet-ics project-data, methods and results. Thermochim Acta 2000;355:125–143. [CrossRef]
- [25] Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for
perform-ing kinetic computations on thermal analysis data. Thermochim Acta 2011;520:1–19. [CrossRef]