Araştırma Makalesi
BibTex RIS Kaynak Göster

R(3,1) Semi-Riemannian Uzayda 2-Cob Üreteç Kobordizm Örnekleri

Yıl 2022, Cilt: 11 Sayı: 2, 99 - 106, 29.06.2022
https://doi.org/10.46810/tdfd.808519

Öz

Duggal ve Bejancu 1996 da yayınladıkları kitapta bir semi-Riemannian manifoldda lightlike (null) alt uzayın varlığını gösterdiler ve alt manifoldların geometrisi için ihtiyaç duyulan önemli bir boşluğu doldurdular. Semi-Riemannian manifoldlar için unireglelik, kodaira boyutu gibi birasyonel invaryantların yanında maximum lineer bağımsız lightlike vektörlerin sayıları olan k(U) değerlerinin de bir birasyonel invaryant olduğu vurgıulanarak R31 Semi-Riemannian Uzayda 2-Cob Üreteç kobordizmlere örnekler verilmiş, bunların kodaira boyutları ve k(U) invaryantları ifade edilmiştir.

Destekleyen Kurum

Bu çalışma Muş Alparslan Üniversitesi Bilimsel Araştırma Projeleri birimince desteklenmiştir.

Proje Numarası

Proje no: BAP-18-EMF-4902-02.

Kaynakça

  • [1] Guillemin, V., Sternberg, S. Birational equivalence in the symplectic category. Invent. Math. 1989; 97: 485–522.
  • [2] McDuff, D., Salamon, D. Introduction to Symplectic Topology, 2nd edn New York: Oxford Math. Monogr. Oxford University Press;1998.
  • [3] Matsuki,K.:Lectures on factorization of birationalmaps. arXiv:math.AG/0002084
  • [4] Hu J., Li T-J., Ruan Y., Birational cobordism invariance of uniruled symplectic manifolds, Invent. math. 2008; 172: 231–275.
  • [5] Li, T.-J.,Existence of embedded symplectic surfaces. In: Geometry and Topology of Manifolds. Fields Inst. Commun.,47: 203–217. Am. Math. Soc., Providence, RI. 2005.
  • [6] Kollar J., Low degree polynomial equations: arithmetic, geometry, topology. European Congress of Mathematics, vol. I (Budapest, 1996). Prog. Math., 1998; 168: 255–288.
  • [7] Ruan Y.,Virtual neighborhoods and pseudoholomorphic curves. Turk. J. Math., 1999; 23: 161–231.
  • [8] Duggal K. L. and Bejancu, A., Lightlike submanifold of semi-Riemannian manifolds and its applications, The Netherlands: Kluwer Academic; 1996.
  • [9] Duggal K. L. and Şahin, B., Differential geometry of lightlike submanifolds, Birkhäuser: Verlag; 2010.
  • [10] Kupeli D. N., Singular Semi-Riemannian Geometry, Dordrecht:Kluwer Academic Publishers; 1996.
  • [11] Kocaayan H., Karakteristik Sınıfları, [Y.Lisans Tezi], İzmir: Ege Üniversitesi Fen Bilimleri Enstitüsü; 2012.
  • [12] Chern,S.S., Charecteristic classes of Hermitian manifolds, Annals of Mathematics, 1946;47(1):85-121.
  • [13] Çallıalp, F., Soyut Cebir, İstanbul: Birsen Yayınevi; 2009.
  • [14] Pierce, D. [internet], Galois Teorisi, Matematik Bölümü,MSGSÜ, 2018.Available from: http://mat.msgsu.edu.tr/~dpierce/Dersler/Galois-Teorisi/galois-kurami-2018.pdf.
  • [15] O’Neill B., Semi-Riemannian Geometry with Applications to relativity, San Diego-California: Akademic Press. Inc.; 1983.
  • [16] İncesu M., “Benzerlik Geometrisinde Noktaların Tam İnvaryantları Sistemi”, [doktora tezi] , Trabzon: Karadeniz Teknik Üniversitesi, 2008
  • [17] Sağıroğlu Y., Parametrik Eğrilerin Afin Diferensiyel İnvaryantları, [doktora tezi], Trabzon:Karadeniz Teknik Üniv. Fen Bilimleri Ens., 2002.
  • [18] Hirsch M.W., Graduate Text in Mathematics: Differential Topology, New York: Springer; 1976.
  • [19] Stong R. E., Notes on cobordism theory, Princeton N.J.: Princeton University Press; 1968.
  • [20] Thom, R., Qoelques propi_et es globales des varieties differentiables, Commentari Mathematici Helvetici, 1954; 28: 17-86. [21] Ören İ., O(3,1)-Ortogonal Grubu için Noktaların İnvaryantları, [doktora tezi], Trabzon: Karadeniz Teknik Üniversitesi, 2007.
  • [22] Boucksom S., Demailly J.P., Paun M. and Peternell T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Alg. Geometry 2013; 22 (2): 201-248.
  • [23] Bogomolov F., Tschinkel Y., Rational curves and points on K3 surfaces, Amer. J. Math., 2005;127 (4) : 825-835.
  • [24] Shioda T., An example of unirational surfaces in characteristicp . Math. Ann., 1974; 211: 233–236.
  • [25] Wikipedia contributors. Ruled variety [Internet]. Wikipedia, The Free Encyclopedia; 2020 Apr 12, 13:29 UTC [cited 2020 Oct 9]. Available from: https://en.wikipedia.org/w/index.php?title=Ruled_variety&oldid=950515178.

The Examples of Generators of 2-cob Cobordisms in Semi-Riemannian Space R(3,1)

Yıl 2022, Cilt: 11 Sayı: 2, 99 - 106, 29.06.2022
https://doi.org/10.46810/tdfd.808519

Öz

In their book published in 1996, Duggal and Bejancu demonstrated the existence of a lightlike (null) subspace in a semi-Riemannian manifold and filled an important gap needed for the geometry of submanifolds. In addition to birational invariants such as uniruledness and kodaira dimensions for Semi-Riemannian manifolds, in this study, by emphasizing the k (U) values which are the numbers of maximum linearly independent lightlike vectors, that are a birational invariance, the examples of generators of 2- Cob cobordisms are given in Semi-Riemannian Space R(3,1). Their codaira dimensions and k (U) invariants of these examples has been expressed.

Proje Numarası

Proje no: BAP-18-EMF-4902-02.

Kaynakça

  • [1] Guillemin, V., Sternberg, S. Birational equivalence in the symplectic category. Invent. Math. 1989; 97: 485–522.
  • [2] McDuff, D., Salamon, D. Introduction to Symplectic Topology, 2nd edn New York: Oxford Math. Monogr. Oxford University Press;1998.
  • [3] Matsuki,K.:Lectures on factorization of birationalmaps. arXiv:math.AG/0002084
  • [4] Hu J., Li T-J., Ruan Y., Birational cobordism invariance of uniruled symplectic manifolds, Invent. math. 2008; 172: 231–275.
  • [5] Li, T.-J.,Existence of embedded symplectic surfaces. In: Geometry and Topology of Manifolds. Fields Inst. Commun.,47: 203–217. Am. Math. Soc., Providence, RI. 2005.
  • [6] Kollar J., Low degree polynomial equations: arithmetic, geometry, topology. European Congress of Mathematics, vol. I (Budapest, 1996). Prog. Math., 1998; 168: 255–288.
  • [7] Ruan Y.,Virtual neighborhoods and pseudoholomorphic curves. Turk. J. Math., 1999; 23: 161–231.
  • [8] Duggal K. L. and Bejancu, A., Lightlike submanifold of semi-Riemannian manifolds and its applications, The Netherlands: Kluwer Academic; 1996.
  • [9] Duggal K. L. and Şahin, B., Differential geometry of lightlike submanifolds, Birkhäuser: Verlag; 2010.
  • [10] Kupeli D. N., Singular Semi-Riemannian Geometry, Dordrecht:Kluwer Academic Publishers; 1996.
  • [11] Kocaayan H., Karakteristik Sınıfları, [Y.Lisans Tezi], İzmir: Ege Üniversitesi Fen Bilimleri Enstitüsü; 2012.
  • [12] Chern,S.S., Charecteristic classes of Hermitian manifolds, Annals of Mathematics, 1946;47(1):85-121.
  • [13] Çallıalp, F., Soyut Cebir, İstanbul: Birsen Yayınevi; 2009.
  • [14] Pierce, D. [internet], Galois Teorisi, Matematik Bölümü,MSGSÜ, 2018.Available from: http://mat.msgsu.edu.tr/~dpierce/Dersler/Galois-Teorisi/galois-kurami-2018.pdf.
  • [15] O’Neill B., Semi-Riemannian Geometry with Applications to relativity, San Diego-California: Akademic Press. Inc.; 1983.
  • [16] İncesu M., “Benzerlik Geometrisinde Noktaların Tam İnvaryantları Sistemi”, [doktora tezi] , Trabzon: Karadeniz Teknik Üniversitesi, 2008
  • [17] Sağıroğlu Y., Parametrik Eğrilerin Afin Diferensiyel İnvaryantları, [doktora tezi], Trabzon:Karadeniz Teknik Üniv. Fen Bilimleri Ens., 2002.
  • [18] Hirsch M.W., Graduate Text in Mathematics: Differential Topology, New York: Springer; 1976.
  • [19] Stong R. E., Notes on cobordism theory, Princeton N.J.: Princeton University Press; 1968.
  • [20] Thom, R., Qoelques propi_et es globales des varieties differentiables, Commentari Mathematici Helvetici, 1954; 28: 17-86. [21] Ören İ., O(3,1)-Ortogonal Grubu için Noktaların İnvaryantları, [doktora tezi], Trabzon: Karadeniz Teknik Üniversitesi, 2007.
  • [22] Boucksom S., Demailly J.P., Paun M. and Peternell T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Alg. Geometry 2013; 22 (2): 201-248.
  • [23] Bogomolov F., Tschinkel Y., Rational curves and points on K3 surfaces, Amer. J. Math., 2005;127 (4) : 825-835.
  • [24] Shioda T., An example of unirational surfaces in characteristicp . Math. Ann., 1974; 211: 233–236.
  • [25] Wikipedia contributors. Ruled variety [Internet]. Wikipedia, The Free Encyclopedia; 2020 Apr 12, 13:29 UTC [cited 2020 Oct 9]. Available from: https://en.wikipedia.org/w/index.php?title=Ruled_variety&oldid=950515178.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Muhsin İncesu 0000-0003-2515-9627

Sara Işık 0000-0002-4058-3277

Proje Numarası Proje no: BAP-18-EMF-4902-02.
Erken Görünüm Tarihi 29 Haziran 2022
Yayımlanma Tarihi 29 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: 2

Kaynak Göster

APA İncesu, M., & Işık, S. (2022). R(3,1) Semi-Riemannian Uzayda 2-Cob Üreteç Kobordizm Örnekleri. Türk Doğa Ve Fen Dergisi, 11(2), 99-106. https://doi.org/10.46810/tdfd.808519
AMA İncesu M, Işık S. R(3,1) Semi-Riemannian Uzayda 2-Cob Üreteç Kobordizm Örnekleri. TDFD. Haziran 2022;11(2):99-106. doi:10.46810/tdfd.808519
Chicago İncesu, Muhsin, ve Sara Işık. “R(3,1) Semi-Riemannian Uzayda 2-Cob Üreteç Kobordizm Örnekleri”. Türk Doğa Ve Fen Dergisi 11, sy. 2 (Haziran 2022): 99-106. https://doi.org/10.46810/tdfd.808519.
EndNote İncesu M, Işık S (01 Haziran 2022) R(3,1) Semi-Riemannian Uzayda 2-Cob Üreteç Kobordizm Örnekleri. Türk Doğa ve Fen Dergisi 11 2 99–106.
IEEE M. İncesu ve S. Işık, “R(3,1) Semi-Riemannian Uzayda 2-Cob Üreteç Kobordizm Örnekleri”, TDFD, c. 11, sy. 2, ss. 99–106, 2022, doi: 10.46810/tdfd.808519.
ISNAD İncesu, Muhsin - Işık, Sara. “R(3,1) Semi-Riemannian Uzayda 2-Cob Üreteç Kobordizm Örnekleri”. Türk Doğa ve Fen Dergisi 11/2 (Haziran 2022), 99-106. https://doi.org/10.46810/tdfd.808519.
JAMA İncesu M, Işık S. R(3,1) Semi-Riemannian Uzayda 2-Cob Üreteç Kobordizm Örnekleri. TDFD. 2022;11:99–106.
MLA İncesu, Muhsin ve Sara Işık. “R(3,1) Semi-Riemannian Uzayda 2-Cob Üreteç Kobordizm Örnekleri”. Türk Doğa Ve Fen Dergisi, c. 11, sy. 2, 2022, ss. 99-106, doi:10.46810/tdfd.808519.
Vancouver İncesu M, Işık S. R(3,1) Semi-Riemannian Uzayda 2-Cob Üreteç Kobordizm Örnekleri. TDFD. 2022;11(2):99-106.