By constructing Hopf costructures on closure spaces via homotopy, we give the concepts of closure Hopf cospace (CH-cospace) and closure Hopf cogroup (CH-cogroup). We then prove that retract and deformation retract of a CH-cospace are also a CH-cospace. We construct a Hopf costructure on a set with the help of the quotient closure operator. We also show that a closure space with the same homotopy type as a CH-cogroup is itself a CH-cogroup. We prove the existence of a covariant functor between the homotopy category of the pointed closure spaces ($\mathcal{CHC}$) and the category of groups and homomorphisms.
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 23 Aralık 2022 |
Yayımlanma Tarihi | 30 Aralık 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 14 Sayı: 2 |