Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 14 Sayı: 2, 321 - 330, 30.12.2022
https://doi.org/10.47000/tjmcs.1091039

Öz

Kaynakça

  • Adhikari, M.R., Rahaman, M., A study of some aspects of topological groups, Filomat, 21(1)(2007), 55–65.
  • Arkowitz, M., Introduction to Homotopy Theory, Springer, New York, 2011.
  • Boonpok, C., On continuous maps in closure spaces, General mathematics, 17(2)(2009), 127–134.
  • Cech, E., Topological Spaces, Czechoslovak Acad. of Sciences, Prag, 1966.
  • Ege, O., Karaca, I., Digital H-spaces, Proceeding of 3rd International Symposium on Computing in Science and Engineering, Kuadas-Turkey, October 24-25 (2013), 133–138.
  • Ege, O., Karaca, I., Some properties of digital H-spaces, Turkish Journal of Electrical Engineering and Computer Sciences, 24(3)(2016), 1930–1941.
  • Ege, O., Karaca, I., Digital co-Hopf spaces, Filomat, 34(8)(2020), 2705–2711.
  • Eroglu, I., Guner, E., Separation axioms in Cech closure ordered spaces, Commun. Fac. Sci. Univ. Ank. Ser A1 Math. Stat, 65(2016,) 1–10.
  • Lee, D.W., Digital H-spaces and actions in the pointed digital homotopy category, Applicable Algebra in Engineering, Communication and Computing, 31(2020), 149169.
  • Mashhour, A.S., Ghanim, M.H., On closure spaces, Indian J. Pure Appl. Math, 14(6)(1983), 680–691.
  • Park, K., On Sub-H-Groups of an H group and their duals, Journal of the Korean Mathematical Society, 6(1)(1969), 41–46.
  • Rieser, A., Cech closure spaces:A unified framework for discrete and continuous homotopy, Topology and its Applications, 296(2021).

Co-Hopf Space Structure on Closure Spaces

Yıl 2022, Cilt: 14 Sayı: 2, 321 - 330, 30.12.2022
https://doi.org/10.47000/tjmcs.1091039

Öz

By constructing Hopf costructures on closure spaces via homotopy, we give the concepts of closure Hopf cospace (CH-cospace) and closure Hopf cogroup (CH-cogroup). We then prove that retract and deformation retract of a CH-cospace are also a CH-cospace. We construct a Hopf costructure on a set with the help of the quotient closure operator. We also show that a closure space with the same homotopy type as a CH-cogroup is itself a CH-cogroup. We prove the existence of a covariant functor between the homotopy category of the pointed closure spaces ($\mathcal{CHC}$) and the category of groups and homomorphisms.

Kaynakça

  • Adhikari, M.R., Rahaman, M., A study of some aspects of topological groups, Filomat, 21(1)(2007), 55–65.
  • Arkowitz, M., Introduction to Homotopy Theory, Springer, New York, 2011.
  • Boonpok, C., On continuous maps in closure spaces, General mathematics, 17(2)(2009), 127–134.
  • Cech, E., Topological Spaces, Czechoslovak Acad. of Sciences, Prag, 1966.
  • Ege, O., Karaca, I., Digital H-spaces, Proceeding of 3rd International Symposium on Computing in Science and Engineering, Kuadas-Turkey, October 24-25 (2013), 133–138.
  • Ege, O., Karaca, I., Some properties of digital H-spaces, Turkish Journal of Electrical Engineering and Computer Sciences, 24(3)(2016), 1930–1941.
  • Ege, O., Karaca, I., Digital co-Hopf spaces, Filomat, 34(8)(2020), 2705–2711.
  • Eroglu, I., Guner, E., Separation axioms in Cech closure ordered spaces, Commun. Fac. Sci. Univ. Ank. Ser A1 Math. Stat, 65(2016,) 1–10.
  • Lee, D.W., Digital H-spaces and actions in the pointed digital homotopy category, Applicable Algebra in Engineering, Communication and Computing, 31(2020), 149169.
  • Mashhour, A.S., Ghanim, M.H., On closure spaces, Indian J. Pure Appl. Math, 14(6)(1983), 680–691.
  • Park, K., On Sub-H-Groups of an H group and their duals, Journal of the Korean Mathematical Society, 6(1)(1969), 41–46.
  • Rieser, A., Cech closure spaces:A unified framework for discrete and continuous homotopy, Topology and its Applications, 296(2021).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Sibel Demiralp 0000-0002-3977-587X

Erken Görünüm Tarihi 23 Aralık 2022
Yayımlanma Tarihi 30 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 14 Sayı: 2

Kaynak Göster

APA Demiralp, S. (2022). Co-Hopf Space Structure on Closure Spaces. Turkish Journal of Mathematics and Computer Science, 14(2), 321-330. https://doi.org/10.47000/tjmcs.1091039
AMA Demiralp S. Co-Hopf Space Structure on Closure Spaces. TJMCS. Aralık 2022;14(2):321-330. doi:10.47000/tjmcs.1091039
Chicago Demiralp, Sibel. “Co-Hopf Space Structure on Closure Spaces”. Turkish Journal of Mathematics and Computer Science 14, sy. 2 (Aralık 2022): 321-30. https://doi.org/10.47000/tjmcs.1091039.
EndNote Demiralp S (01 Aralık 2022) Co-Hopf Space Structure on Closure Spaces. Turkish Journal of Mathematics and Computer Science 14 2 321–330.
IEEE S. Demiralp, “Co-Hopf Space Structure on Closure Spaces”, TJMCS, c. 14, sy. 2, ss. 321–330, 2022, doi: 10.47000/tjmcs.1091039.
ISNAD Demiralp, Sibel. “Co-Hopf Space Structure on Closure Spaces”. Turkish Journal of Mathematics and Computer Science 14/2 (Aralık 2022), 321-330. https://doi.org/10.47000/tjmcs.1091039.
JAMA Demiralp S. Co-Hopf Space Structure on Closure Spaces. TJMCS. 2022;14:321–330.
MLA Demiralp, Sibel. “Co-Hopf Space Structure on Closure Spaces”. Turkish Journal of Mathematics and Computer Science, c. 14, sy. 2, 2022, ss. 321-30, doi:10.47000/tjmcs.1091039.
Vancouver Demiralp S. Co-Hopf Space Structure on Closure Spaces. TJMCS. 2022;14(2):321-30.