Ölçme aracının gözlenen puanlarına ilişkin güvenirlik ve geçerliğinin belirlenebilmesi, ölçme hatalarının kestirilebilmesi amacıyla doğrulayıcı faktör analizi hesaplanmaktadır. Doğrulayıcı faktör analizi çok değişkenli bir istatistik olduğundan çeşitli varsayımlara dayanmaktadır. Bu varsayımların incelenmesinin ardından modelin hesaplanması ve model-veri uyum indekslerinin değerlendirilmesi aşamasına geçilmektedir. Ancak ölçme aracının geliştirme ve uyarlama çalışmalarında model hesaplaması değerlendirilmeden ya da yeterince raporlanmadan uyum indekslerine geçildiği belirlenmiştir. Bu durum sonuçların yanlı olmasında neden olmaktadır. Bu çalışmada doğrusallık ve örneklem büyüklüğü varsayımları üzerinde durulmuştur. Doğrusallık varsayımını karşılamayan göstergelerin modelden çıkarılması ya da parametre sınırlandırma yoluna gidilmesi gerekmektedir. Parametre sınırlandırmasında faktör yükü en yüksek maddelerle en düşük maddelerin parametreleri sınırlandırılmış ve sonuçlar karşılaştırılmıştır. Sınırlandırma değeri olarak 1, KTK ve MTK’den kestirilen değerler kullanılmıştır. Bu doğrultuda örneklem büyüklüğü (4) x parametre kestirim yöntemi (3) x parametre sınırlandırma veya çıkarma (7) olmak üzere toplam 84 durum üzerinde incelemeler gerçekleştirilmiştir. Hesaplamalar sonucunda doğrusallık ve örneklem büyüklüğü varsayımlarının karşılanmadığı durumda modelin yanlı kestirimler gerçekleştirdiği belirlenmiştir. Doğrusallık varsayımının karşılamayan maddelerin modelden çıkarılmadan uyum indekslerinin yorumlanmaması gerektiği görülmüştür. Parametre sınırlandırmasında yüksek faktör yük değerine sahip maddelerin KTK’den elde edilen değerlere sınırlandırılabileceği tespit edilmiştir.
Kaynakça
Andrews, D. W. K. (1999). Estimation when a parameter is on a boundary. Econometrica, 67(6), 1341-1383.
Andrews, D. W. K. (2001). Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica, 69(3), 683-734.
Baker, F. B. (2001). The basics of item response theory. Eric Clearinghouse on Assessment and Evaluation.
Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-246.
Crocker, L. M. & Algina, L. (1986). Introduction to classical and modern test theory. New York: Holt, Rinehart and Winston.
Çerezci, E.T. (2010). Yapısal eşitlik modelleri ve kullanılan uyum iyiliği indekslerinin karşılaştırılması. Yayınlanmamış Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
Davidian, M. (2005). Simulation studies in statistics, ST810A.
Embretson, S. E. & Reise, S. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum Publishers.
Fan, X., Felsovályi, Á., Sivo, S. & Keenan, S. (2002). SAS for monte carlo studies a guide for quantitative researchers. SAS Institute Inc., Cary, NC, USA.
Fan, X., Thompson B. & Wang, L. (1999). Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6(1), 56-83.
Hambleton, R. K. & Patsula, L. (1999). Increasing the validity of adapted tests: Myths to be avoided and guidelines for improving test asaptation practices. Journal of Applied Testing Technology, 1(1), 1-30.
Hambleton, R. K. & Swaminathan, H. (1985). Item response theory principles and applications. Boston: Kluwer.
Hoyle, R. H. (1995). Structural equation modeling concepts, issues, and applications. SAGE Publications, California.
Iacobucci, D. (2009). Structural equations modeling: Fit Indices, sample size, and advanced topics, Journal of Consumer Psychology, 20, 90-98.
Jackson, D. L. (2007). The effect of the number of observations per parameter in misspecified confirmatory factor analytic models. Structural Equation Modeling, 14, 48–76.
Jackson, D.L., Voth, J. & Frey, M.P. (2013). A note on sample size and solution propriety for confirmatory factor analytic models. Structural Equation Modeling, 20, 86-97.
Jöreskog, K.G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago, Scientific Software International, USA.
Kim, K.H. (2009). The relation among fit indexes, power, and sample size in structural equation modeling. Structural Equation Modeling, 12(3), 368-390.
Kline, R. X. (2005). Classical test theory assumptions, equations, limitations, and item analyses Loken (Chp. 5). In Psychological testing: A practical approach to design and evaluation, SAGE Publications, California.
Kline, R. B. (2011). Principals and practice of structural equation modeling. New York. The Guilford Press.
Marsh, H. W., Hau, K. T., & Grayson, D. (2005). Goodness of fit in structural equation models. In A. Maydeu-Olivares & J. J. McArdle (Eds.). Contemporary psychometrics: A festschrift for Roderick P. McDonald, 275–340. Mahwah, NJ: Erlbaum.
McDonald, R.P. (1999). Test theory: a unified treatment. Mahwah, NJ: Lawrence Erlbaum.
Morris, A. S. & Langari, R. (2012). Measurement and ınstrumentation theory and application. Elsevier Inc., California.
Quesnel, C., Scherling, C. & Wallis, N. (2007). Structural equation modeling: A simple-complex multivariate technique. SEMWHORKSHOP Presentation.
Raykoy, T. & Marcoulides, G.A. (2000). A first course in structural equation modeling. Lawrence Erlbaum Associates, Inc., New Jersey.
Rindskopf, D. (1983). A general framework for using latent class analysis to test hierarchical and nonhierarchical learning models. Psychometrika, 48, 85-97.
Savalei, V., & Bentler, P. M. (2006). Structural equation modeling. In R. Grover & M. Vriens (Eds.), The handbook of marketing research: Uses, misuses, and future advances, 330-36). Thousand Oaks, CA: Sage.
Savalei, V. & Kolenikov, S. (2008). Constrained versus unconstrained estimation in structural equation modeling, Psychol Methods, 13(2), 150-170.
Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23-74.
Schumacker, R.E. & Lomax, R.G. (2004). A beginner’s guide to structural equation modeling. Lawrence Erlbaum Associates, New Jersey.
Stoel, R. D., Garre, F. G., Dolan C. & Wittenboer G. (2006). On the likelihood ratio test in structural equation modeling when, parameters are subject to boundary constraints. Psychological Methods, 11(4), 439-455.
Suguwara, H. M. & MacCallum, R.C. (1993). Effect of estimation method on ıncremental fit ındexes for covariance structure models. Applied Psychological Measurement, 17(4), 365-377.
Tabachnick, B. G. & Fidell, L. S. (2007). Using multivariate statistics. Boston: Allyn and Bacon.
Andrews, D. W. K. (1999). Estimation when a parameter is on a boundary. Econometrica, 67(6), 1341-1383.
Andrews, D. W. K. (2001). Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica, 69(3), 683-734.
Baker, F. B. (2001). The basics of item response theory. Eric Clearinghouse on Assessment and Evaluation.
Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-246.
Crocker, L. M. & Algina, L. (1986). Introduction to classical and modern test theory. New York: Holt, Rinehart and Winston.
Çerezci, E.T. (2010). Yapısal eşitlik modelleri ve kullanılan uyum iyiliği indekslerinin karşılaştırılması. Yayınlanmamış Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
Davidian, M. (2005). Simulation studies in statistics, ST810A.
Embretson, S. E. & Reise, S. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum Publishers.
Fan, X., Felsovályi, Á., Sivo, S. & Keenan, S. (2002). SAS for monte carlo studies a guide for quantitative researchers. SAS Institute Inc., Cary, NC, USA.
Fan, X., Thompson B. & Wang, L. (1999). Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6(1), 56-83.
Hambleton, R. K. & Patsula, L. (1999). Increasing the validity of adapted tests: Myths to be avoided and guidelines for improving test asaptation practices. Journal of Applied Testing Technology, 1(1), 1-30.
Hambleton, R. K. & Swaminathan, H. (1985). Item response theory principles and applications. Boston: Kluwer.
Hoyle, R. H. (1995). Structural equation modeling concepts, issues, and applications. SAGE Publications, California.
Iacobucci, D. (2009). Structural equations modeling: Fit Indices, sample size, and advanced topics, Journal of Consumer Psychology, 20, 90-98.
Jackson, D. L. (2007). The effect of the number of observations per parameter in misspecified confirmatory factor analytic models. Structural Equation Modeling, 14, 48–76.
Jackson, D.L., Voth, J. & Frey, M.P. (2013). A note on sample size and solution propriety for confirmatory factor analytic models. Structural Equation Modeling, 20, 86-97.
Jöreskog, K.G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago, Scientific Software International, USA.
Kim, K.H. (2009). The relation among fit indexes, power, and sample size in structural equation modeling. Structural Equation Modeling, 12(3), 368-390.
Kline, R. X. (2005). Classical test theory assumptions, equations, limitations, and item analyses Loken (Chp. 5). In Psychological testing: A practical approach to design and evaluation, SAGE Publications, California.
Kline, R. B. (2011). Principals and practice of structural equation modeling. New York. The Guilford Press.
Marsh, H. W., Hau, K. T., & Grayson, D. (2005). Goodness of fit in structural equation models. In A. Maydeu-Olivares & J. J. McArdle (Eds.). Contemporary psychometrics: A festschrift for Roderick P. McDonald, 275–340. Mahwah, NJ: Erlbaum.
McDonald, R.P. (1999). Test theory: a unified treatment. Mahwah, NJ: Lawrence Erlbaum.
Morris, A. S. & Langari, R. (2012). Measurement and ınstrumentation theory and application. Elsevier Inc., California.
Quesnel, C., Scherling, C. & Wallis, N. (2007). Structural equation modeling: A simple-complex multivariate technique. SEMWHORKSHOP Presentation.
Raykoy, T. & Marcoulides, G.A. (2000). A first course in structural equation modeling. Lawrence Erlbaum Associates, Inc., New Jersey.
Rindskopf, D. (1983). A general framework for using latent class analysis to test hierarchical and nonhierarchical learning models. Psychometrika, 48, 85-97.
Savalei, V., & Bentler, P. M. (2006). Structural equation modeling. In R. Grover & M. Vriens (Eds.), The handbook of marketing research: Uses, misuses, and future advances, 330-36). Thousand Oaks, CA: Sage.
Savalei, V. & Kolenikov, S. (2008). Constrained versus unconstrained estimation in structural equation modeling, Psychol Methods, 13(2), 150-170.
Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23-74.
Schumacker, R.E. & Lomax, R.G. (2004). A beginner’s guide to structural equation modeling. Lawrence Erlbaum Associates, New Jersey.
Stoel, R. D., Garre, F. G., Dolan C. & Wittenboer G. (2006). On the likelihood ratio test in structural equation modeling when, parameters are subject to boundary constraints. Psychological Methods, 11(4), 439-455.
Suguwara, H. M. & MacCallum, R.C. (1993). Effect of estimation method on ıncremental fit ındexes for covariance structure models. Applied Psychological Measurement, 17(4), 365-377.
Tabachnick, B. G. & Fidell, L. S. (2007). Using multivariate statistics. Boston: Allyn and Bacon.
Sayın, A., & Gelbal, S. (2016). YAPISAL EŞİTLİK MODELLEMESİNDE PARAMETRELERİN KLASİK TEST KURAMI VE MADDE TEPKİ KURAMINA GÖRE SINIRLANDIRILMASININ UYUM İNDEKSLERİNE ETKİSİ. Uluslararası Eğitim Bilim Ve Teknoloji Dergisi, 2(2), 57-71.