Research Article
BibTex RIS Cite

Betonarme Kiriş Performansında Donatı Yerleşiminin ve Beton Örtüsünün Önemi

Year 2025, Volume: 17 Issue: 1, 182 - 197

Abstract

Uzun yıllardır inşaat sektöründe yapı malzemesi olarak kullanılan beton basınç dayanımı yüksek, çekme dayanımı düşük ve gevrek bir malzeme olduğu için özellikle çekme bölgelerinde sünek bir malzeme olan çelik donatı ile desteklenmektedir. Bu sebeple beton ile donatı arasındaki kenetlenmeyi sağlayan ara yüzey kayma gerilmesi olan aderans, betonarmenin varoluş nedenidir. Aderans ancak uygun donatı yerleşimi ve beton örtüsü ile elde edilebilmektedir. Bu sebeple uygulamada oluşabilecek hatalar aderansı doğrudan etkilemektedir. Bu çalışmada, uygulama esnasında donatı yerleşimi ve beton örtüsü kalınlığında yapılacak hataların ne gibi sonuçları olabileceğini araştırmak amacıyla 1/2 ölçekli, kesiti 15x30 cm olan ve uzunluğu 205 cm olan 4 farklı grupta 8 adet betonarme kiriş üretilerek, kiriş açıklığındaki çekme bölgesi donatısının yerleşiminin ve beton örtüsünden kaynaklı aderansın kiriş performansına etkisinin deneysel olarak belirlenmesi amaçlanmıştır. Yapılan üç noktalı eğilme deneyi sonucunda, beton örtüsünün ve donatı yerleşiminin standartlara uygun yapılması durumunda artan aderansa bağlı olarak; maksimum taşıma kapasitesi düşerken, betonarme kirişlerde öncül çatlakların daha yüksek yüklemeler altında meydana geldiği, geniş çatlaklar yerine daha fazla sayıda kılcal çatlakların oluştuğu ve kirişlerin daha rijit davrandığı görülmüştür. Aderansın sağlanamadığı durumlarda nervürlü donatıların düz donatı davranışına benzer şekilde davranıp, sıyrılarak geniş çatlaklar oluşturduğu görülmüştür.

Ethical Statement

Bu makalenin yazarları çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal- özel bir izin gerektirmediğini beyan ederler.

Supporting Institution

Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2023/140

Thanks

Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir. Proje numarası 2023/140.

References

  • Akgül, M., Doğan, O., & Odacıoğlu, O.G. (2022). A review on adherence in reinforced concrete. Civil Engineering Beyond Limits, 3(4), 1-7. DOI: 10.36937/cebel.2022.1765
  • Akgül, M., & Doğan, O. (2022). Determination of Reinforcement Adherence Loss by Accelerated Corrosion Test for Normal and 4% NaCl Solubility Cured Flat and Ribbed Reinforced Concretes with Different Strengths. International Journal of Engineering Research and Development, 14(2), 691-704. https://doi.org/10.29137/umagd.1092523
  • Akyürek, M. (2019). The Effect of Concrete Cover and Concrete Strength on Concrete with FRP Bars Exposed to High Temperature. Doctoral Thesis. Sakarya University, Institute of Science and Technology, Sakarya.
  • Alper, D. (2008). Adhesive and Fatigue of Reinforcement in Concrete. Master’s Thesis. Kırıkkale University, Institute of Science and Technology, Kırıkkale.
  • Arslan, M.E., & Arslan, T. (2018). Investigation of Development Length and Rebar Diameter Effects on Bond Strength by Using Hinged Beam Test. Science and Engineering Journal of Fırat University, 30(2), 1-11.
  • Atmaca, G. (2017). Effect of Aggregate Clay Content on Concrete Mechanical Properties and Its Bond with Reinforcement. Master’s Thesis. Ege University, Institute of Science and Technology, İzmir.
  • Aydın, S. (2021). Investigation of High Performance Concrete Cover Production. Master’s Thesis. Düzce University, Institute of Postgraduate Education, Düzce.
  • Ayhan, B., Lale, E., & Çelik, N. (2022). Size Effect Analysis of Concrete Beams Under Bending Using Crack-Band Approach. Journal of Polytechnic, 25(2), 605-613. https://doi.org/10.2339/politeknik.762634
  • Başaran, B., & Kalkan, İ. (2021). Comparison of Different FRP Reinforcement-Concrete Bon Test Methods According to Parameters Affecting This Bond. Journal of The Faculty of Engineering and Architecture of Gazi University, 36(3), 1581-1594. https://doi.org/10.17341/gazimmfd.656823
  • Başaran, B., & Kalkan, İ. (2020). Investigation on Variables Affecting Bond Strength Between FRP Reinforcing Bar and Concrete by Modified Hinged Beam Tests. Composite Structures, 242(15). https://doi.org/10.1016/j.compstruct.2020.112185112185
  • Bilgil, A., Öztürk, B., & Bilgil, H. (2005). A numerical approach to determine viscosity-dependent segregation in fresh concrete. Applied Mathematics and Computation, 162(1), 225-241. https://doi.org/10.1016/j.amc.2003.12.086
  • Bilgil, A., Öztürk, B., & Şamandar, A. (2010). Application of numerical analysis for investigation of relationship between slump values and other rheological properties of fresh concrete. Scientific Research and Essays, 5(10), 1111-1121. https://doi.org/10.1016/j.amc.2003.12.086
  • Biscaia, H.C., & Soares, S. (2020). Adherence Prediction Between Ribbed Steel Rebars and Concrete: A New Perspective and Comparison with Codes. Structures, 25, 979-999. https://doi.org/10.1016/j.istruc.2020.04.019
  • Bouazaoui, L., & Li, A. (2008). Analysis of Steel/Concrete Interfacial Shear Stress by means of Pull Out Test. International Journal of Adhesion and Adhesives, 28(3), 101-108. DOI: 10.1016/j.ijadhadh.2007.02.006
  • Cedrim, F.A., Almeida, V.L.S., Souza, C.A.C., Lima, P.R.L., Jesus, M.D., & Ribeiro, D.V. (2019). Corrodobility and Adherence of Reinforced Concrete Rebars Electroplated with Zinc and Zinc-Nickel Alloys. Materials Research, 22(4). https://doi.org/10.1590/1980-5373-MR-2018-0915
  • Celep, Z. (2022). Reinforced Concrete Structures. 12th Edition, Beta Printing and Publishing, Ankara,
  • Coşkan, S., & Yüksel, İ. (2013). Effects of The Rebar Corrosion to Structural System Behavio of Frames. SDU International Journal of Technologic Science, 5(3), 77-88.
  • Dasar, A., Patah, D., Hamada, H., Yamamoto, D., & Sagawa, Y. (2022). Life Performance of 40 Year Old RC Beams with Different Concrete Covers and Bar Diameters in Natural Corrosion Environments. Structures, 46, 2031-2046. https://doi.org/10.1016/j.istruc.2022.11.033
  • Demirel, F., & Altındaş, S. (2005). Classification of Fire Resistance of Building Elements According to European Union Directives and Comparison Between Turkey and Europe. Journal of Polytechnic, 8(4), 381-395.
  • Doğan, O., & Akgül, M. (2020). The Effect of Reinforcement Corrosion on Durability and Adherence of Reinforced Concrete. 5th International Applied Science Congress, Diyarbakır, Türkiye, 251-265.
  • Doğan, O., Genç, Y., & Akgül, M. (2022). Comparison of Cross-Sectional Effects of Reinforce Concrete Frame and Anchored / Secondary Beams within The Scope of DBYBHY-2007 and TBDY-2018. Dicle University Journal of Engineering, 13(2), 295-305. https://doi.org/10.24012/dumf.1053898
  • Doğan, O., Koç, Ö., & Akgül, M. (2019). Effect of the Concrete Compressive Strength on Fatigue of the Bond Between Concrete and Reinforcement. 5nd International Congress on Engineering, Architecture and Design, İstanbul, Türkiye, 1161-1169.
  • Döndüren, M. S., Çöğürcü, M. T., & Altın, M. (2006). An Experimental Study For on The Bond Behavior of Reinforcing Steel and Concrete. Journal of Faculty of Engineering and Architecture Selçuk University, 21(3-4), 57-68.
  • Ersoy, U., Özcebe, G., & Canbay, E. (2019). Reinforced Concrete Volume 1-Behaviour and Calculation Principles. 9th Edition, Evrim Publications, İstanbul.
  • Ertuç, İ., Yalçıner, H., & Kumbasaroğlu, A. (2018). Flexural Behavior of Reinforced Concrete Beams Subjected to Corrosion. Erzincan University Journal of Science and Technology, 11(1), 1-10.
  • Foroughi, S., & Yüksel, S. B. (2023). Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams. Journal of Polytechnic, 26(1), 169-177.
  • Harmuth, H. (1995). Investigation of the Adherence and the Fracture Behaviour of Polymer Cement Concrete. Cement and Concrete Research, 25(3), 497-502.
  • Ichinose, T., Kanayama, Y., Inoue, Y., & Bolander, Jr. J. E. (2004). Size Effect on Bond Strength of Deformed Bars. Construction and Building Materials, 18(7), 549-558.
  • Jendele, L., & Cervenka, J. (2006). Finite Element Modelling of Reinforcement with Bond. Computers and Structures, 84(28), 1780-1791.
  • Kassem, M. M., Nazri, F. M., Farsangi, E. N., & Öztürk, B. (2022). Development of a uniform seismic vulnerability index framework for reinforced concrete building typology. Journal of Building Engineering, 47(15), 103838. https://doi.org/10.1016/j.jobe.2021.103838
  • Katz, A. (2018). Statistical Variations of Rebar Placement and Its Effect on Service Life. Practice Periodical on Structural Design and Construction, 23(3). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000379
  • Khoury, G. A. (2000). Effect of Fire on Concrete and Concrete Structures. Progress in Structural Engineering and Materials, 2(4), 429-447.
  • Larrard, F., Schaller, I., & Fuchs, J. (1993). Effect of the Bar Diameter on the Bond Strength of Passive Reinforcement in High-Performance Concrete. ACI Materials Journal, 90(4), 333-339.
  • Lee, H. S., Noguchi, T., & Tomosawa, F. (2002). Evaluation of the Bond Properties Between Concrete and Reinforcement as a Function of the Degree of Reinforcement Corrosion. Cement and Concrete Research, 32(8), 1313-1318.
  • Merkle, D., Solass, J., Schmitt, A., Rosin, J., Reiterer, A., & Stolz, A. (2023). Semi-Automatic 3D Crack Map Generation and Width Evaluation For Structural Monitoring of Reinforced Concrete Structures. Journal of Information Technology in Construction (ITcon), 28, 774-805.
  • Mirza, S. M., & Houde, J. (1979). Study of Bond Stress-Slip Relationships in Reinforced Concrete. ACI Journal, 76(1), 19-46.
  • Naaman, A. E., & Najm, H. (1991). Bond-Slip Mechanisms of Steel Fibers in Concrete. ACI Materials Journal, 88(2), 135-145.
  • Oliveira, T. C., Simonetti, E. A. N., & Cividanes, L. S. (2023). Graphene Derivatives as Reinforcement in Coatings Based on Epoxy and Silane for Enhancing Its Corrosion Resistance - A Latest Advances Review. International Journal of Adhesion and Adhesives, 126. https://doi.org/10.1016/j.ijadhadh.2023.103484
  • Özkal, F. M., & Uysal, H. (2017). Determination of the Optimum Reinforcement Layout in RC Structural Members: Cantilever Beam Example. Iğdır University Journal of The Institute of Science and Technology, 7(2), 157-169.
  • Picandet, V., Khelidj, A., & Bellegou, H. (2009). Crack Effects on Gas and Water Permeability of Concretes. Cement and Concrete Research, 39(6), 537-547. DOI: 10.1016/j.cemconres.2009.03.009
  • Pinoteau, N., Pimienta, P., Guillet, T., Rivillon, P., & Remond, S. (2011). Effect of Heating Rate on Bond Failure of Rebars into Concrete Using Polymer Adhesives to Simulate Exposure to Fire. International Journal of Adhesion and Adhesives, 31(8), 851-861. DOI: 10.1016/j.ijadhadh.2011.08.005
  • Sakcalı, G. B., Yüksel, İ., & Sağıroğlu, S. (2024). Experimental and Numerical Investigation of The Bond Behavior of Smooth and Sand-Coated Rebar in Concrete by Flexural Bond Test Method. Journal of Polytechnic, 27(2), 709-720. https://doi.org/10.2339/politeknik.1097459
  • Sartori, A. L., Pinheiro, L. M., Silva, R. M., Freitas, S. B., & Cesar, T. G. (2017). Adherence Between Steel Bars and Lightweight Concrete with EPS Beads. Ibracon Structures and Materials Journal, 10(1), 122-159. DOI: 10.1590/s1983-41952017000100007
  • Severcan, M. H., Kara, İ. F., & Akçaözoğlu, K. (2016). Experimental Investigation of Deflections of Reinforced Concrete Beams With Different Reinforcement Ratios and Loading Types. Niğde University Journal of Engineering Sciences, 5(2), 135-147. https://doi.org/10.28948/ngumuh.295004
  • Shi, X., Tan, T. H., Tan, K. H., & Guo, Z. (2004). Influence of Concrete Cover on Fire Resistance of Reinforced Concrete Flexural Members. Journal of Structural Engineering, 130(8), 1225-1232. DOI: 10.1061/(ASCE)0733-9445(2004)130:8(1225)
  • Tanyıldızı, H., & Yazıcıoğlu, S. (2006). Effect of Curing Conditions on Bond Strength Between Concrete and Reinforcement Steel. Fırat University Journal of Eastern Studies, 5(1), 11-14.
  • TBDY (2018). Turkey Building Earthquake Regulations.
  • Topçu, İ. B., & Boğa, A. R. (2008). Effect of Corrosion on Adherence Between Reinforcement and Concrete for Reinforced Concrete. Journal of Engineering & Architecture Faculty Eskişehir Osmangazi University, 21(1), 23-38.
  • Topçu, İ. B., Canbaz, M., & Karakurt, C. (2006). Utilization of Chemical Admixtures for Concrete Production. Journal of Polytechnic, 9(1), 59-63.
  • Tramis, O., Brethous, R., Hassoune-Rhabbour, B., Fazzini, M., & Nassiet, V. (2016). Experimental Investigation on the Effect of Nanostructuration on the Adherence Properties of Epoxy Adhesives by a Probe Tack Test. International Journal of Adhesion and Adhesives, 67, 22-30. DOI: 10.1016/j.ijadhadh.2015.12.021
  • TS EN 206+A2 (2021). Concrete - Properties, Performance, Manufacturing and Compliance.
  • TS EN ISO 6892-1 (2020). Metallic Materials - Tensile Testing - Part 1: Test Method at Ambient Temperature.
  • TS500 (2000). Design and Construction Rules of Reinforced Concrete Structures.
  • TS 708 (2016). Steel - Reinforcing Steel for Reinforced Concrete.
  • Turan, A. F. (2022). Effects of Reinforcement Ratio and Widit / Height Ratio on Beam Behavior in Reinforced Concrete Beams. Master’s Thesis, Bursa Uludağ University, Institute of Science and Technology, Bursa.
  • Türk, K., & Başsürücü, M. (2021). Bond Strength of Full-Scale Beams with Blended Short and Long Steel Fiber. Pamukkale University Journal of Engineering Sciences, 27(3), 274-280.
  • Ünlüoğlu, E., Topçu, İ. B., & Yalaman, B. (2007). Concrete Cover Effect on Reinforced Concrete Bars Exposed to High Temperatures. İMO Journal of Technic, 18(87), 4145-4155.
  • Üstün, B., & Dal, M. (2016). Evaluation of Reinforced Concrete Reinforcement Applications. Journal of Science and Youth, 4(1), 8-19.
  • Vu, K. A. T., & Stewart, M. G. (2005). Predicting the Likelihood and Extent of Reinforced Concrete Corrosion-Induced Cracking. Journal of Structural Engineering, 131(11), 1681-1689. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1681)
  • Wang, H. L., Dai, J. G., Sun, X. Y., & Zhang, X. L. (2016). Characteristics of Concrete Cracks and Their Influence on Chloride Penetration. Construction and Building Materials, 107, 216-225. https://doi.org/10.1016/j.conbuildmat.2016.01.002
  • Yücel, K. T., & Erten, K. M. (2023). Effects of Additives on Concrete-Rebar Adherence. International Scientific and Vocational Journal (ISVOS Journal), 7(1), 47-54. https://doi.org/10.47897/bilmes.1293025

The Importance of Reinforcement Placement and Concrete Cover in Reinforced Concrete Beam Performance

Year 2025, Volume: 17 Issue: 1, 182 - 197

Abstract

Concrete, which has been used as a building material in the construction industry for many years, is a brittle material with high compressive strength and low tensile strength, and is supported by steel reinforcement, which is a ductile material, especially in tensile zones. For this reason, adherence, which is the interface shear stress that provides the interlock between concrete and reinforcement, is the reason for the existence of reinforced concrete. Adherence can only be achieved with appropriate reinforcement placement and concrete cover. For this reason, errors that may occur in the application directly affect adherence. In this study, in order to investigate the consequences of errors in reinforcement placement and concrete cover thickness during application, 8 reinforced concrete beams in 4 different groups of 1/2 scale, with a cross section of 15x30 cm and a length of 205 cm were produced and it was aimed to experimentally determine the effect of the placement of the tensile zone reinforcement in the beam span and the adherence caused by the concrete cover on the beam performance. As a result of the three-point bending test, it was observed that if the concrete cover and reinforcement placement are made in accordance with the standards, the maximum bearing capacity decreases due to the increased adherence, while the leading cracks in reinforced concrete beams occur under higher loads, more number of capillary cracks are formed instead of large cracks and the beams behave more rigid. In cases where adherence is not achieved, ribbed reinforcement behaves similar to the behaviour of plain reinforcement and forms wide cracks by stripping.

Project Number

2023/140

References

  • Akgül, M., Doğan, O., & Odacıoğlu, O.G. (2022). A review on adherence in reinforced concrete. Civil Engineering Beyond Limits, 3(4), 1-7. DOI: 10.36937/cebel.2022.1765
  • Akgül, M., & Doğan, O. (2022). Determination of Reinforcement Adherence Loss by Accelerated Corrosion Test for Normal and 4% NaCl Solubility Cured Flat and Ribbed Reinforced Concretes with Different Strengths. International Journal of Engineering Research and Development, 14(2), 691-704. https://doi.org/10.29137/umagd.1092523
  • Akyürek, M. (2019). The Effect of Concrete Cover and Concrete Strength on Concrete with FRP Bars Exposed to High Temperature. Doctoral Thesis. Sakarya University, Institute of Science and Technology, Sakarya.
  • Alper, D. (2008). Adhesive and Fatigue of Reinforcement in Concrete. Master’s Thesis. Kırıkkale University, Institute of Science and Technology, Kırıkkale.
  • Arslan, M.E., & Arslan, T. (2018). Investigation of Development Length and Rebar Diameter Effects on Bond Strength by Using Hinged Beam Test. Science and Engineering Journal of Fırat University, 30(2), 1-11.
  • Atmaca, G. (2017). Effect of Aggregate Clay Content on Concrete Mechanical Properties and Its Bond with Reinforcement. Master’s Thesis. Ege University, Institute of Science and Technology, İzmir.
  • Aydın, S. (2021). Investigation of High Performance Concrete Cover Production. Master’s Thesis. Düzce University, Institute of Postgraduate Education, Düzce.
  • Ayhan, B., Lale, E., & Çelik, N. (2022). Size Effect Analysis of Concrete Beams Under Bending Using Crack-Band Approach. Journal of Polytechnic, 25(2), 605-613. https://doi.org/10.2339/politeknik.762634
  • Başaran, B., & Kalkan, İ. (2021). Comparison of Different FRP Reinforcement-Concrete Bon Test Methods According to Parameters Affecting This Bond. Journal of The Faculty of Engineering and Architecture of Gazi University, 36(3), 1581-1594. https://doi.org/10.17341/gazimmfd.656823
  • Başaran, B., & Kalkan, İ. (2020). Investigation on Variables Affecting Bond Strength Between FRP Reinforcing Bar and Concrete by Modified Hinged Beam Tests. Composite Structures, 242(15). https://doi.org/10.1016/j.compstruct.2020.112185112185
  • Bilgil, A., Öztürk, B., & Bilgil, H. (2005). A numerical approach to determine viscosity-dependent segregation in fresh concrete. Applied Mathematics and Computation, 162(1), 225-241. https://doi.org/10.1016/j.amc.2003.12.086
  • Bilgil, A., Öztürk, B., & Şamandar, A. (2010). Application of numerical analysis for investigation of relationship between slump values and other rheological properties of fresh concrete. Scientific Research and Essays, 5(10), 1111-1121. https://doi.org/10.1016/j.amc.2003.12.086
  • Biscaia, H.C., & Soares, S. (2020). Adherence Prediction Between Ribbed Steel Rebars and Concrete: A New Perspective and Comparison with Codes. Structures, 25, 979-999. https://doi.org/10.1016/j.istruc.2020.04.019
  • Bouazaoui, L., & Li, A. (2008). Analysis of Steel/Concrete Interfacial Shear Stress by means of Pull Out Test. International Journal of Adhesion and Adhesives, 28(3), 101-108. DOI: 10.1016/j.ijadhadh.2007.02.006
  • Cedrim, F.A., Almeida, V.L.S., Souza, C.A.C., Lima, P.R.L., Jesus, M.D., & Ribeiro, D.V. (2019). Corrodobility and Adherence of Reinforced Concrete Rebars Electroplated with Zinc and Zinc-Nickel Alloys. Materials Research, 22(4). https://doi.org/10.1590/1980-5373-MR-2018-0915
  • Celep, Z. (2022). Reinforced Concrete Structures. 12th Edition, Beta Printing and Publishing, Ankara,
  • Coşkan, S., & Yüksel, İ. (2013). Effects of The Rebar Corrosion to Structural System Behavio of Frames. SDU International Journal of Technologic Science, 5(3), 77-88.
  • Dasar, A., Patah, D., Hamada, H., Yamamoto, D., & Sagawa, Y. (2022). Life Performance of 40 Year Old RC Beams with Different Concrete Covers and Bar Diameters in Natural Corrosion Environments. Structures, 46, 2031-2046. https://doi.org/10.1016/j.istruc.2022.11.033
  • Demirel, F., & Altındaş, S. (2005). Classification of Fire Resistance of Building Elements According to European Union Directives and Comparison Between Turkey and Europe. Journal of Polytechnic, 8(4), 381-395.
  • Doğan, O., & Akgül, M. (2020). The Effect of Reinforcement Corrosion on Durability and Adherence of Reinforced Concrete. 5th International Applied Science Congress, Diyarbakır, Türkiye, 251-265.
  • Doğan, O., Genç, Y., & Akgül, M. (2022). Comparison of Cross-Sectional Effects of Reinforce Concrete Frame and Anchored / Secondary Beams within The Scope of DBYBHY-2007 and TBDY-2018. Dicle University Journal of Engineering, 13(2), 295-305. https://doi.org/10.24012/dumf.1053898
  • Doğan, O., Koç, Ö., & Akgül, M. (2019). Effect of the Concrete Compressive Strength on Fatigue of the Bond Between Concrete and Reinforcement. 5nd International Congress on Engineering, Architecture and Design, İstanbul, Türkiye, 1161-1169.
  • Döndüren, M. S., Çöğürcü, M. T., & Altın, M. (2006). An Experimental Study For on The Bond Behavior of Reinforcing Steel and Concrete. Journal of Faculty of Engineering and Architecture Selçuk University, 21(3-4), 57-68.
  • Ersoy, U., Özcebe, G., & Canbay, E. (2019). Reinforced Concrete Volume 1-Behaviour and Calculation Principles. 9th Edition, Evrim Publications, İstanbul.
  • Ertuç, İ., Yalçıner, H., & Kumbasaroğlu, A. (2018). Flexural Behavior of Reinforced Concrete Beams Subjected to Corrosion. Erzincan University Journal of Science and Technology, 11(1), 1-10.
  • Foroughi, S., & Yüksel, S. B. (2023). Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams. Journal of Polytechnic, 26(1), 169-177.
  • Harmuth, H. (1995). Investigation of the Adherence and the Fracture Behaviour of Polymer Cement Concrete. Cement and Concrete Research, 25(3), 497-502.
  • Ichinose, T., Kanayama, Y., Inoue, Y., & Bolander, Jr. J. E. (2004). Size Effect on Bond Strength of Deformed Bars. Construction and Building Materials, 18(7), 549-558.
  • Jendele, L., & Cervenka, J. (2006). Finite Element Modelling of Reinforcement with Bond. Computers and Structures, 84(28), 1780-1791.
  • Kassem, M. M., Nazri, F. M., Farsangi, E. N., & Öztürk, B. (2022). Development of a uniform seismic vulnerability index framework for reinforced concrete building typology. Journal of Building Engineering, 47(15), 103838. https://doi.org/10.1016/j.jobe.2021.103838
  • Katz, A. (2018). Statistical Variations of Rebar Placement and Its Effect on Service Life. Practice Periodical on Structural Design and Construction, 23(3). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000379
  • Khoury, G. A. (2000). Effect of Fire on Concrete and Concrete Structures. Progress in Structural Engineering and Materials, 2(4), 429-447.
  • Larrard, F., Schaller, I., & Fuchs, J. (1993). Effect of the Bar Diameter on the Bond Strength of Passive Reinforcement in High-Performance Concrete. ACI Materials Journal, 90(4), 333-339.
  • Lee, H. S., Noguchi, T., & Tomosawa, F. (2002). Evaluation of the Bond Properties Between Concrete and Reinforcement as a Function of the Degree of Reinforcement Corrosion. Cement and Concrete Research, 32(8), 1313-1318.
  • Merkle, D., Solass, J., Schmitt, A., Rosin, J., Reiterer, A., & Stolz, A. (2023). Semi-Automatic 3D Crack Map Generation and Width Evaluation For Structural Monitoring of Reinforced Concrete Structures. Journal of Information Technology in Construction (ITcon), 28, 774-805.
  • Mirza, S. M., & Houde, J. (1979). Study of Bond Stress-Slip Relationships in Reinforced Concrete. ACI Journal, 76(1), 19-46.
  • Naaman, A. E., & Najm, H. (1991). Bond-Slip Mechanisms of Steel Fibers in Concrete. ACI Materials Journal, 88(2), 135-145.
  • Oliveira, T. C., Simonetti, E. A. N., & Cividanes, L. S. (2023). Graphene Derivatives as Reinforcement in Coatings Based on Epoxy and Silane for Enhancing Its Corrosion Resistance - A Latest Advances Review. International Journal of Adhesion and Adhesives, 126. https://doi.org/10.1016/j.ijadhadh.2023.103484
  • Özkal, F. M., & Uysal, H. (2017). Determination of the Optimum Reinforcement Layout in RC Structural Members: Cantilever Beam Example. Iğdır University Journal of The Institute of Science and Technology, 7(2), 157-169.
  • Picandet, V., Khelidj, A., & Bellegou, H. (2009). Crack Effects on Gas and Water Permeability of Concretes. Cement and Concrete Research, 39(6), 537-547. DOI: 10.1016/j.cemconres.2009.03.009
  • Pinoteau, N., Pimienta, P., Guillet, T., Rivillon, P., & Remond, S. (2011). Effect of Heating Rate on Bond Failure of Rebars into Concrete Using Polymer Adhesives to Simulate Exposure to Fire. International Journal of Adhesion and Adhesives, 31(8), 851-861. DOI: 10.1016/j.ijadhadh.2011.08.005
  • Sakcalı, G. B., Yüksel, İ., & Sağıroğlu, S. (2024). Experimental and Numerical Investigation of The Bond Behavior of Smooth and Sand-Coated Rebar in Concrete by Flexural Bond Test Method. Journal of Polytechnic, 27(2), 709-720. https://doi.org/10.2339/politeknik.1097459
  • Sartori, A. L., Pinheiro, L. M., Silva, R. M., Freitas, S. B., & Cesar, T. G. (2017). Adherence Between Steel Bars and Lightweight Concrete with EPS Beads. Ibracon Structures and Materials Journal, 10(1), 122-159. DOI: 10.1590/s1983-41952017000100007
  • Severcan, M. H., Kara, İ. F., & Akçaözoğlu, K. (2016). Experimental Investigation of Deflections of Reinforced Concrete Beams With Different Reinforcement Ratios and Loading Types. Niğde University Journal of Engineering Sciences, 5(2), 135-147. https://doi.org/10.28948/ngumuh.295004
  • Shi, X., Tan, T. H., Tan, K. H., & Guo, Z. (2004). Influence of Concrete Cover on Fire Resistance of Reinforced Concrete Flexural Members. Journal of Structural Engineering, 130(8), 1225-1232. DOI: 10.1061/(ASCE)0733-9445(2004)130:8(1225)
  • Tanyıldızı, H., & Yazıcıoğlu, S. (2006). Effect of Curing Conditions on Bond Strength Between Concrete and Reinforcement Steel. Fırat University Journal of Eastern Studies, 5(1), 11-14.
  • TBDY (2018). Turkey Building Earthquake Regulations.
  • Topçu, İ. B., & Boğa, A. R. (2008). Effect of Corrosion on Adherence Between Reinforcement and Concrete for Reinforced Concrete. Journal of Engineering & Architecture Faculty Eskişehir Osmangazi University, 21(1), 23-38.
  • Topçu, İ. B., Canbaz, M., & Karakurt, C. (2006). Utilization of Chemical Admixtures for Concrete Production. Journal of Polytechnic, 9(1), 59-63.
  • Tramis, O., Brethous, R., Hassoune-Rhabbour, B., Fazzini, M., & Nassiet, V. (2016). Experimental Investigation on the Effect of Nanostructuration on the Adherence Properties of Epoxy Adhesives by a Probe Tack Test. International Journal of Adhesion and Adhesives, 67, 22-30. DOI: 10.1016/j.ijadhadh.2015.12.021
  • TS EN 206+A2 (2021). Concrete - Properties, Performance, Manufacturing and Compliance.
  • TS EN ISO 6892-1 (2020). Metallic Materials - Tensile Testing - Part 1: Test Method at Ambient Temperature.
  • TS500 (2000). Design and Construction Rules of Reinforced Concrete Structures.
  • TS 708 (2016). Steel - Reinforcing Steel for Reinforced Concrete.
  • Turan, A. F. (2022). Effects of Reinforcement Ratio and Widit / Height Ratio on Beam Behavior in Reinforced Concrete Beams. Master’s Thesis, Bursa Uludağ University, Institute of Science and Technology, Bursa.
  • Türk, K., & Başsürücü, M. (2021). Bond Strength of Full-Scale Beams with Blended Short and Long Steel Fiber. Pamukkale University Journal of Engineering Sciences, 27(3), 274-280.
  • Ünlüoğlu, E., Topçu, İ. B., & Yalaman, B. (2007). Concrete Cover Effect on Reinforced Concrete Bars Exposed to High Temperatures. İMO Journal of Technic, 18(87), 4145-4155.
  • Üstün, B., & Dal, M. (2016). Evaluation of Reinforced Concrete Reinforcement Applications. Journal of Science and Youth, 4(1), 8-19.
  • Vu, K. A. T., & Stewart, M. G. (2005). Predicting the Likelihood and Extent of Reinforced Concrete Corrosion-Induced Cracking. Journal of Structural Engineering, 131(11), 1681-1689. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1681)
  • Wang, H. L., Dai, J. G., Sun, X. Y., & Zhang, X. L. (2016). Characteristics of Concrete Cracks and Their Influence on Chloride Penetration. Construction and Building Materials, 107, 216-225. https://doi.org/10.1016/j.conbuildmat.2016.01.002
  • Yücel, K. T., & Erten, K. M. (2023). Effects of Additives on Concrete-Rebar Adherence. International Scientific and Vocational Journal (ISVOS Journal), 7(1), 47-54. https://doi.org/10.47897/bilmes.1293025
There are 61 citations in total.

Details

Primary Language English
Subjects Reinforced Concrete Buildings
Journal Section Articles
Authors

Orhan Doğan 0000-0002-4942-1725

Berkay Çakır 0009-0001-9939-6601

Yunus Genç 0000-0002-1163-0724

Orhan Gazi Odacıoğlu 0000-0002-6838-1183

Project Number 2023/140
Early Pub Date March 3, 2025
Publication Date
Submission Date May 27, 2024
Acceptance Date July 25, 2024
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Doğan, O., Çakır, B., Genç, Y., Odacıoğlu, O. G. (2025). The Importance of Reinforcement Placement and Concrete Cover in Reinforced Concrete Beam Performance. International Journal of Engineering Research and Development, 17(1), 182-197. https://doi.org/10.29137/umagd.1490528

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.