Araştırma Makalesi
BibTex RIS Kaynak Göster

ÇOKLU ARAMA STRATEJİLERİ KULLANAN ÇOK AMAÇLI PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMİ İLE DAİRESEL ÇOK HÜCRELİ ÇARPIŞMA KUTUSUNUN OPTİMİZASYONU

Yıl 2022, Cilt: 27 Sayı: 1, 119 - 134, 30.04.2022
https://doi.org/10.17482/uumfd.977327

Öz

Çarpışma kutuları araçlarda darbe emici yapılar olarak araçların tampon kısımlarında bulunur. Çarpışma kutularının şekli, çarpışma performansını önemli oranda etkilemektedir. Çarpışma kutuları üzerine yapılan çalışmalarda çok hücreli çarpışma kutularının tek duvardan oluşan çarpışma kutularına göre daha iyi performansa sahip oldukları ortaya koyulmuştur. Çok hücreli çarpışma kutularında dış duvar içerisindeki yapıların geometrisi çarpışma performansını arttırmada önemli rol oynamaktadır. Bu çalışmada her birinin dış duvarı silindirik olan ve içi kare, altıgen, sekizgen ve dairesel kesitler ile eklenmiş dört farklı çarpışma kutusunun performansları incelenmiştir. En iyi performansa sahip olan içerisine dairesel kesit eklenmiş dairesel çok hücreli çarpışma kutusuna çoklu arama stratejileri kullanan çok amaçlı parçacık sürü optimizasyonu (MMOPSO) yöntemiyle optimizasyon çalışması yapılmıştır. Optimizasyon çalışması, radyal temelli fonksiyonlar yöntemi ile elde edilen metamodel kullanılarak gerçekleştirilmiştir. Metamodel, latin hiperküp yöntemi ile belirlenen otuz adet örnekleme noktası kullanılarak oluşturulmuştur.

Kaynakça

  • 1. Abbasi, M., Reddy, S., Ghafari-Nazari, A., Fard, M. (2015) Multiobjective crashworthiness optimization of multi-cornered thin-walled sheet metal members, Thin-walled structures, 89, 31-41. doi:10.1016/j.tws.2014.12.009
  • 2. Albak, E.İ. (2021) Crashworthiness design for multi-cell circumferentially corrugated thin-walled tubes with sub-sections under multiple loading conditions, Thin-Walled Structures, 164, 107886. doi:10.1016/j.tws.2021.107886
  • 3. Albak, E.İ. (2020) Effects of sections added to multi-cell square tubes on crash performance. Materials Testing, 62(5), 471-480. doi:10.3139/120.111506
  • 4. Albak, E.İ., Solmaz, E., Kaya, N., Öztürk, F. (2019) Impact attenuator conceptual design using lightweight materials and meta-modeling technique, Materials Testing, 61(7), 621-626, doi:10.3139/120.111363
  • 5. Altair (2020) https://www.altair.com/radioss/, Erişim Tarihi: 10.07.2021
  • 6. Bai, Z., Sun, K., Zhu, F., Cao, L., Hu, J., Chou, C.C., Jiang, B. (2018) Crashworthiness optimal design of a new extruded octagonal multi-cell tube under dynamic axial impact, International Journal of Vehicle Safety, 10(1), 40-57. doi:10.1504/IJVS.2018.093056
  • 7. Chen, T., Zhang, Y., Lin, J., Lu, Y. (2019) Theoretical analysis and crashworthiness optimization of hybrid multi-cell structures, Thin-Walled Structures, 142, 116-131. doi: 10.1016/j.tws.2019.05.002
  • 8. Gao, F.L., Bai, Y.C., Lin, C., Kim, I.Y. (2019) A time-space Kriging-based sequential metamodeling approach for multi-objective crashworthiness optimization, Applied Mathematical Modelling, 69, 378-404. doi:10.1016/j.apm.2018.12.011
  • 9. Hanssen, A.G., Langseth, M., Hopperstad, O.S. (2011) Optimum design for energy absorption of square aluminium columns with aluminium foam filler, International Journal of Mechanical Sciences, 43(1), 153-176. doi:10.1016/S0020-7403(99)00108-3
  • 10. Hou, S., Li, Q., Long, S., Yang, X., Li, W. (2008) Multiobjective optimization of multi-cell sections for the crashworthiness design, International Journal of Impact Engineering, 35(11), 1355-1367. doi:10.1016/j.ijimpeng.2007.09.003
  • 11. Langseth, M. ve Hopperstad O.S. (1996) Static and dynamic axial crushing of square thin-walled aluminium extrusions, International Journal of Impact Engineering, 18(7-8), 949-968. doi:10.1016/S0734-743X(96)00025-5
  • 12. Lanzi, L., Castelletti, L.M.L., Anghileri, M. (2004) Multi-objective optimisation of composite absorber shape under crashworthiness requirements, Composite Structures, 65(3-4), 433-441. doi:10.1016/j.compstruct.2003.12.005
  • 13. Lin, Q., Li, J., Du, Z., Chen, J., Ming, Z. (2015) A novel multi-objective particle swarm optimization with multiple search strategies, European Journal of Operational Research, 247(3), 732-744.
  • 14. Liu, W., Lin, Z., He, J., Wang, N., Deng, X. (2016) Crushing behavior and multi-objective optimization on the crashworthiness of sandwich structure with star-shaped tube in the center, Thin-Walled Structures, 108, 205-214. doi:10.1016/j.tws.2016.08.021
  • 15. Liu, Y. ve Day M.L. (2007) Development of simplified thin-walled beam models for crashworthiness analyses, International Journal of Crashworthiness, 12(6), 597-608. doi:10.1080/13588260701497888
  • 16. Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B., Kostazos, P.K., Dimitriou, C. (2003) Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section, Thin-Walled Structures, 41(10), 891-900. doi:10.1016/S0263-8231(03)00046-6
  • 17. Mamalis, A.G., Manolakos, D.E., Demosthenous, G.A., Ioannidis, M.B. (1996) Analysis of failure mechanisms observed in axial collapse of thin-walled circular fibreglass composite tubes, Thin-Walled Structures, 24(4), 335-352. doi:10.1016/0263-8231(95)00042-9
  • 18. Öztürk, İ., Kaya, N., Öztürk, F. (2018) Design of vehicle parts under impact loading using a multi-objective design approach, Materials Testing, 60(5), 501-509. doi:10.3139/120.111174
  • 19. Paz, J., Díaz, J., Romera, L., Costas, M. (2014) Crushing analysis and multi-objective crashworthiness optimization of GFRP honeycomb-filled energy absorption devices, Finite Elements in Analysis and Design, 91, 30-39. doi: 10.1016/j.finel.2014.07.006
  • 20. Qiu, N., Gao, Y., Fang, J., Feng, Z., Sun, G., Li, Q. (2015) Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases, Finite Elements in Analysis and Design, 104, 89-101. doi:10.1016/j.finel.2015.06.004
  • 21. Sun, G., Pang, T., Fang, J., Li, G., Li, Q. (2017) Parameterization of criss-cross configurations for multiobjective crashworthiness optimization, International Journal of Mechanical Sciences, 124, 145-157. doi:10.1016/j.ijmecsci.2017.02.027
  • 22. Tarlochan, F., Samer, F., Hamouda, A.M.S., Ramesh, S., Khalid, K. (2013) Design of thin wall structures for energy absorption applications: enhancement of crashworthiness due to axial and oblique impact forces, Thin-Walled Structures, 71, 7-17. doi:10.1016/j.tws.2013.04.003
  • 23. Tran, T., Hou, S., Han, X., Tan, W., Nguyen, N. (2014) Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes, Thin-Walled Structures, 82, 183-195. doi:10.1016/j.tws.2014.03.019
  • 24. Vinayagar, K. ve Kumar A.S. (2017) Crashworthiness analysis of double section bi-tubular thin-walled structures, Thin-Walled Structures, 112, 184-193. doi:10.1016/j.tws.2016.12.008
  • 25. Wang, H.P., Wu, C.T., Guo, Y., Botkin, M.E. (2009) A coupled meshfree/finite element method for automotive crashworthiness simulations, International Journal of Impact Engineering, 36(10-11), 1210-1222. doi:10.1016/j.ijimpeng.2009.03.004
  • 26. Xia, Y., Yin, H., Fang, H., Wen, G. (2016) Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading, International Journal of Mechanics and Materials in Design, 12 (4), 563-576. doi:10.1007/s10999-016-9341-6
  • 27. Yamashita, M., Gotoh, M., Sawairi, Y. (2003) Axial crush of hollow cylindrical structures with various polygonal cross-sections: Numerical simulation and experiment, Journal of Materials Processing Technology, 140(1-3), 59-64. doi:10.1016/S0924-0136(03)00821-5
  • 28. Yıldız, A.R., Kurtuluş, E., Demirci, E., Yıldız, B.S., Karagöz, S. (2016) Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm, Materials Testing, 58(1), 75-78. doi:10.3139/120.110823
  • 29. Zhang, L., Bai, Z., Bai, F. (2018) Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections, Thin-Walled Structures, 122, 42-51. doi:10.1016/j.tws.2017.10.010
  • 30. Zhang, X. ve Zhang H. (2014) Axial crushing of circular multi-cell columns, International Journal of Impact Engineering, 65, 110-125. doi:10.1016/j.ijimpeng.2013.12.002
  • 31. Zhang, Y., Xu, X., Wang, J., Chen, T., Wang, C.H. (2018) Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load, International Journal of Mechanical Sciences, 140, 407-431. doi:10.1016/j.ijmecsci.2018.03.015

Optimization of a Circular Multi-cell Crash Box by Multi-objective Particle Swarm Optimization Using Multiple Search Strategies

Yıl 2022, Cilt: 27 Sayı: 1, 119 - 134, 30.04.2022
https://doi.org/10.17482/uumfd.977327

Öz

The crash boxes are located in vehicles in the part of the bumper as energy-absorbing structures. The shape of the thin-walled tubes significantly influences the crashworthiness performance. In the studies on thin-walled tubes, it has been shown that multi-cell tubes have better crashworthiness performance than mono-cell tubes. In multi-cell tubes, the cross-section of the structures within the outer wall plays an important role in improving the crashworthiness performance. In this study, the crashworthiness performance of circular multi-cell tubes filled with square, hexagonal, octagonal and circular cross-sections are examined. The circular multi-cell tube filled with a circular cross-section, which has the best values within four multi-cell tubes, has been selected to optimize the crashworthiness performance using the multi-objective particle swarm optimization using multiple search strategies (MMOPSO). The optimization study is performed using the surrogate model. A surrogate model is created by using the radial basis function with thirty sampling points which are created using the Latin hypercube method.

Kaynakça

  • 1. Abbasi, M., Reddy, S., Ghafari-Nazari, A., Fard, M. (2015) Multiobjective crashworthiness optimization of multi-cornered thin-walled sheet metal members, Thin-walled structures, 89, 31-41. doi:10.1016/j.tws.2014.12.009
  • 2. Albak, E.İ. (2021) Crashworthiness design for multi-cell circumferentially corrugated thin-walled tubes with sub-sections under multiple loading conditions, Thin-Walled Structures, 164, 107886. doi:10.1016/j.tws.2021.107886
  • 3. Albak, E.İ. (2020) Effects of sections added to multi-cell square tubes on crash performance. Materials Testing, 62(5), 471-480. doi:10.3139/120.111506
  • 4. Albak, E.İ., Solmaz, E., Kaya, N., Öztürk, F. (2019) Impact attenuator conceptual design using lightweight materials and meta-modeling technique, Materials Testing, 61(7), 621-626, doi:10.3139/120.111363
  • 5. Altair (2020) https://www.altair.com/radioss/, Erişim Tarihi: 10.07.2021
  • 6. Bai, Z., Sun, K., Zhu, F., Cao, L., Hu, J., Chou, C.C., Jiang, B. (2018) Crashworthiness optimal design of a new extruded octagonal multi-cell tube under dynamic axial impact, International Journal of Vehicle Safety, 10(1), 40-57. doi:10.1504/IJVS.2018.093056
  • 7. Chen, T., Zhang, Y., Lin, J., Lu, Y. (2019) Theoretical analysis and crashworthiness optimization of hybrid multi-cell structures, Thin-Walled Structures, 142, 116-131. doi: 10.1016/j.tws.2019.05.002
  • 8. Gao, F.L., Bai, Y.C., Lin, C., Kim, I.Y. (2019) A time-space Kriging-based sequential metamodeling approach for multi-objective crashworthiness optimization, Applied Mathematical Modelling, 69, 378-404. doi:10.1016/j.apm.2018.12.011
  • 9. Hanssen, A.G., Langseth, M., Hopperstad, O.S. (2011) Optimum design for energy absorption of square aluminium columns with aluminium foam filler, International Journal of Mechanical Sciences, 43(1), 153-176. doi:10.1016/S0020-7403(99)00108-3
  • 10. Hou, S., Li, Q., Long, S., Yang, X., Li, W. (2008) Multiobjective optimization of multi-cell sections for the crashworthiness design, International Journal of Impact Engineering, 35(11), 1355-1367. doi:10.1016/j.ijimpeng.2007.09.003
  • 11. Langseth, M. ve Hopperstad O.S. (1996) Static and dynamic axial crushing of square thin-walled aluminium extrusions, International Journal of Impact Engineering, 18(7-8), 949-968. doi:10.1016/S0734-743X(96)00025-5
  • 12. Lanzi, L., Castelletti, L.M.L., Anghileri, M. (2004) Multi-objective optimisation of composite absorber shape under crashworthiness requirements, Composite Structures, 65(3-4), 433-441. doi:10.1016/j.compstruct.2003.12.005
  • 13. Lin, Q., Li, J., Du, Z., Chen, J., Ming, Z. (2015) A novel multi-objective particle swarm optimization with multiple search strategies, European Journal of Operational Research, 247(3), 732-744.
  • 14. Liu, W., Lin, Z., He, J., Wang, N., Deng, X. (2016) Crushing behavior and multi-objective optimization on the crashworthiness of sandwich structure with star-shaped tube in the center, Thin-Walled Structures, 108, 205-214. doi:10.1016/j.tws.2016.08.021
  • 15. Liu, Y. ve Day M.L. (2007) Development of simplified thin-walled beam models for crashworthiness analyses, International Journal of Crashworthiness, 12(6), 597-608. doi:10.1080/13588260701497888
  • 16. Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B., Kostazos, P.K., Dimitriou, C. (2003) Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section, Thin-Walled Structures, 41(10), 891-900. doi:10.1016/S0263-8231(03)00046-6
  • 17. Mamalis, A.G., Manolakos, D.E., Demosthenous, G.A., Ioannidis, M.B. (1996) Analysis of failure mechanisms observed in axial collapse of thin-walled circular fibreglass composite tubes, Thin-Walled Structures, 24(4), 335-352. doi:10.1016/0263-8231(95)00042-9
  • 18. Öztürk, İ., Kaya, N., Öztürk, F. (2018) Design of vehicle parts under impact loading using a multi-objective design approach, Materials Testing, 60(5), 501-509. doi:10.3139/120.111174
  • 19. Paz, J., Díaz, J., Romera, L., Costas, M. (2014) Crushing analysis and multi-objective crashworthiness optimization of GFRP honeycomb-filled energy absorption devices, Finite Elements in Analysis and Design, 91, 30-39. doi: 10.1016/j.finel.2014.07.006
  • 20. Qiu, N., Gao, Y., Fang, J., Feng, Z., Sun, G., Li, Q. (2015) Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases, Finite Elements in Analysis and Design, 104, 89-101. doi:10.1016/j.finel.2015.06.004
  • 21. Sun, G., Pang, T., Fang, J., Li, G., Li, Q. (2017) Parameterization of criss-cross configurations for multiobjective crashworthiness optimization, International Journal of Mechanical Sciences, 124, 145-157. doi:10.1016/j.ijmecsci.2017.02.027
  • 22. Tarlochan, F., Samer, F., Hamouda, A.M.S., Ramesh, S., Khalid, K. (2013) Design of thin wall structures for energy absorption applications: enhancement of crashworthiness due to axial and oblique impact forces, Thin-Walled Structures, 71, 7-17. doi:10.1016/j.tws.2013.04.003
  • 23. Tran, T., Hou, S., Han, X., Tan, W., Nguyen, N. (2014) Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes, Thin-Walled Structures, 82, 183-195. doi:10.1016/j.tws.2014.03.019
  • 24. Vinayagar, K. ve Kumar A.S. (2017) Crashworthiness analysis of double section bi-tubular thin-walled structures, Thin-Walled Structures, 112, 184-193. doi:10.1016/j.tws.2016.12.008
  • 25. Wang, H.P., Wu, C.T., Guo, Y., Botkin, M.E. (2009) A coupled meshfree/finite element method for automotive crashworthiness simulations, International Journal of Impact Engineering, 36(10-11), 1210-1222. doi:10.1016/j.ijimpeng.2009.03.004
  • 26. Xia, Y., Yin, H., Fang, H., Wen, G. (2016) Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading, International Journal of Mechanics and Materials in Design, 12 (4), 563-576. doi:10.1007/s10999-016-9341-6
  • 27. Yamashita, M., Gotoh, M., Sawairi, Y. (2003) Axial crush of hollow cylindrical structures with various polygonal cross-sections: Numerical simulation and experiment, Journal of Materials Processing Technology, 140(1-3), 59-64. doi:10.1016/S0924-0136(03)00821-5
  • 28. Yıldız, A.R., Kurtuluş, E., Demirci, E., Yıldız, B.S., Karagöz, S. (2016) Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm, Materials Testing, 58(1), 75-78. doi:10.3139/120.110823
  • 29. Zhang, L., Bai, Z., Bai, F. (2018) Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections, Thin-Walled Structures, 122, 42-51. doi:10.1016/j.tws.2017.10.010
  • 30. Zhang, X. ve Zhang H. (2014) Axial crushing of circular multi-cell columns, International Journal of Impact Engineering, 65, 110-125. doi:10.1016/j.ijimpeng.2013.12.002
  • 31. Zhang, Y., Xu, X., Wang, J., Chen, T., Wang, C.H. (2018) Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load, International Journal of Mechanical Sciences, 140, 407-431. doi:10.1016/j.ijmecsci.2018.03.015
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Emre İsa Albak 0000-0001-9215-0775

Erol Solmaz 0000-0001-9369-3552

Ferruh Öztürk 0000-0001-5767-8312

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 1 Ağustos 2021
Kabul Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 27 Sayı: 1

Kaynak Göster

APA Albak, E. İ., Solmaz, E., & Öztürk, F. (2022). ÇOKLU ARAMA STRATEJİLERİ KULLANAN ÇOK AMAÇLI PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMİ İLE DAİRESEL ÇOK HÜCRELİ ÇARPIŞMA KUTUSUNUN OPTİMİZASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 119-134. https://doi.org/10.17482/uumfd.977327
AMA Albak Eİ, Solmaz E, Öztürk F. ÇOKLU ARAMA STRATEJİLERİ KULLANAN ÇOK AMAÇLI PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMİ İLE DAİRESEL ÇOK HÜCRELİ ÇARPIŞMA KUTUSUNUN OPTİMİZASYONU. UUJFE. Nisan 2022;27(1):119-134. doi:10.17482/uumfd.977327
Chicago Albak, Emre İsa, Erol Solmaz, ve Ferruh Öztürk. “ÇOKLU ARAMA STRATEJİLERİ KULLANAN ÇOK AMAÇLI PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMİ İLE DAİRESEL ÇOK HÜCRELİ ÇARPIŞMA KUTUSUNUN OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 1 (Nisan 2022): 119-34. https://doi.org/10.17482/uumfd.977327.
EndNote Albak Eİ, Solmaz E, Öztürk F (01 Nisan 2022) ÇOKLU ARAMA STRATEJİLERİ KULLANAN ÇOK AMAÇLI PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMİ İLE DAİRESEL ÇOK HÜCRELİ ÇARPIŞMA KUTUSUNUN OPTİMİZASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 1 119–134.
IEEE E. İ. Albak, E. Solmaz, ve F. Öztürk, “ÇOKLU ARAMA STRATEJİLERİ KULLANAN ÇOK AMAÇLI PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMİ İLE DAİRESEL ÇOK HÜCRELİ ÇARPIŞMA KUTUSUNUN OPTİMİZASYONU”, UUJFE, c. 27, sy. 1, ss. 119–134, 2022, doi: 10.17482/uumfd.977327.
ISNAD Albak, Emre İsa vd. “ÇOKLU ARAMA STRATEJİLERİ KULLANAN ÇOK AMAÇLI PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMİ İLE DAİRESEL ÇOK HÜCRELİ ÇARPIŞMA KUTUSUNUN OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/1 (Nisan 2022), 119-134. https://doi.org/10.17482/uumfd.977327.
JAMA Albak Eİ, Solmaz E, Öztürk F. ÇOKLU ARAMA STRATEJİLERİ KULLANAN ÇOK AMAÇLI PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMİ İLE DAİRESEL ÇOK HÜCRELİ ÇARPIŞMA KUTUSUNUN OPTİMİZASYONU. UUJFE. 2022;27:119–134.
MLA Albak, Emre İsa vd. “ÇOKLU ARAMA STRATEJİLERİ KULLANAN ÇOK AMAÇLI PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMİ İLE DAİRESEL ÇOK HÜCRELİ ÇARPIŞMA KUTUSUNUN OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 1, 2022, ss. 119-34, doi:10.17482/uumfd.977327.
Vancouver Albak Eİ, Solmaz E, Öztürk F. ÇOKLU ARAMA STRATEJİLERİ KULLANAN ÇOK AMAÇLI PARÇACIK SÜRÜ OPTİMİZASYONU YÖNTEMİ İLE DAİRESEL ÇOK HÜCRELİ ÇARPIŞMA KUTUSUNUN OPTİMİZASYONU. UUJFE. 2022;27(1):119-34.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr