Araştırma Makalesi
BibTex RIS Kaynak Göster

Cereal-based fermented synbiotic instant powders: a dessert practice

Yıl 2023, Cilt: 60 Sayı: 4 - Ege Üniversitesi Ziraat Fakültesi Dergisi Cilt: 60 Sayı: 4, 571 - 579, 05.01.2024
https://doi.org/10.20289/zfdergi.1336843

Öz

Objective: This study was aimed to develop synbiotic and probiotic instant powder mixtures that can be used in food products to meet the increasing interest of consumers in functional foods.
Materials and Methods Cereal flours (oat, rice, wheat), sesame, cranberry, chestnut and milled germinated grains (lentil, mung bean) were blended and autoclaved then subjected to fermentation process using the Lactobacillus plantarum strain. A part of the porridge was conventionally dried (FPP) and skim milk powder+fructooligosaccharide+inulin mixture as prebiotic sources were added to the other part and subjected to freeze drying (FSP). The viability of probiotics in the gastrointestinal environment and the Angiotensin-converting enzyme inhibition and bile-acid binding capacities of the powders after in vitro digestion were analyzed. The sensory acceptability of the desserts was evaluated.
Results: FSP contained a higher number of viable cells than FPP after in vitro digestion. Relative bile-acid binding and angiotensin-converting enzyme inhibition capacities of samples were confirmed as their cholesterol-lowering and blood pressure-regulating potential. The panelists rated the dessert samples enriched with 5-15% FPP and FSP as 'liked'.
Conclusion: The integration of these powders into a variety of food products will provide consumers with healthier dietary choices that support their overall health goals.

Kaynakça

  • Audic, J. L., B. Chaufer & G. Daufin, 2003. Non-food applications of milk components and dairy co-products: A review. EDP Sciences Journals, 83 (10): 417-438. https://doi.org/10.1051/lait:2003027
  • Blandino, A., M. E. Al-Aseeri, S. S. Pandiella, D. Cantero & C. Webb, 2003. Cereal-based fermented foods and beverages. Food Research International, 36 (6): 527-543. https://doi.org/10.1016/S0963-9969 (03)00009-7
  • Cook, M. T., G. Tzortzis, D. Charalampopoulos & V. V. Khutoryanskiy, 2012. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162 (1): 56-67. https://doi.org/10.1016/j.jconrel.2012.06.003
  • Dziedzic, K., D. Grecka, M. Kucharska & B. Przybylska, 2012. Influence of technological process during buckwheat groats production on dietary fibre content and sorption of bile acids. Food Research International, 47 (2): 279-283. https://doi.org/10.1016/j.foodres.2011.07.020
  • El, S. N. & S. Simsek, 2012. Food technological applications for optimal nutrition: An overview of opportunities for the food industry. Comprehensive Reviews in Food Science and Food Safety, 11 (1): 2-12. https://doi.org/10.1111/j.1541-4337.2011.00167.x
  • El, S. N., S. Karakaya, S. Simsek, D. Dupont, E. Menfaatli & A. Eker, 2015. In vitro digestibility of goat milk and kefir with a new standardised static digestion method (INFOGEST Cost Action) and bioactivities of the resultant peptides. Food and Function, 6:2322-2330. https://doi.org/10.1039/c5fo00357a
  • Fang, Y., C. Selomulya & X. D. Chen, 2008. On measurement of food powder reconstitution properties. Drying Technology, 26 (1): 3-14. https://doi.org/10.1080/07373930701780928
  • Granato, D., M. L. Masson & J. C. B. Riberio, 2012. Sensory acceptability and physical stability evaluation of a prebiotic soy-based dessert developed with passion fruit juice. Ciência e Tecnologia de Alimentos, 32 (1): 119-125. https://dx.doi.org/10.1590/S0101-20612012005000004
  • Jagannath, A., P. S. Raju & A. S. Bawa, 2010. Comparative evaluation of bacterial cellulose (nata) as a cryoprotectant and carrier support during the freeze-drying process of probiotic lactic acid bacteria. LWT - Food Science and Technology, 43 (8): 1197-1203. https://doi.org/10.1016/j.lwt.2010.03.009
  • Kahlon, T. S. & G. E. Smith, 2007. In vitro binding of bile acids by bananas, peaches, pineapple, grapes, pears, apricots and nectarines. Food Chemistry, 101 (3): 1046-1051. https://doi.org/10.1016/j.foodchem.2006.02.059
  • Kahlon, T. S., J. Berrios, M. C. Chiu & J. L. Pan, 2014. Relative bile acid binding potential of extruded lentil snacks. Food and Nutrition Sciences, 5 (4): 361-365. https://doi:10.4236/fns.2014.54043
  • Kahlon, T. S., M. C. M. Chiu & M. H. Chapman, 2007. Steam cooking significantly improves in vitro bile acid binding of beets, eggplant, asparagus, carrots, green beans, and cauliflower. Nutrition Research, 27 (12): 750-755. https://doi.org/10.1016/j.nutres.2007.09.011
  • Kancabas, A. & S. Karakaya, 2013. Angiotensin-converting enzyme (ACE)-inhibitory activity of boza, a traditional fermented beverage. Journal of the Science of Food and Agriculture, 93 (3): 641-645. https://doi.org/10.1002/jsfa.5883
  • Kent, R. M. & S. B. Doherty, 2014. Probiotic bacteria in infant formula and follow-up formula: Microencapsulation using milk and pea proteins to improve microbiological quality. Food Research International, 64: 567-576. https://doi.org/10.1016/j.foodres.2014.07.029
  • Kim, E. H. J., X. D. Chen & D. Pearce, 2002. Surface characterization of four industrial spray-dried powders in relation to chemical composition, structure, and wetting property. Colloids and Surface B: Biointerfaces, 26 (3): 197-212. https://doi.org/10.1016/S0927-7765 (01)00334-4
  • Lahogue, V., K. Rehel, L. Taupin, D. Haras & P. Allaume, 2010. A HPLC-UV method for the determination of angiotensin I-converting enzyme (ACE) inhibitory activity. Food Chemistry, 118 (3): 870-875. https://doi.org/10.1016/j.foodchem.2009.05.080
  • Manzanares, P., M. Gandía, S. Garrigues & J.F. Marcos, 2019. Improving health-promoting effects of food-derived bioactive peptides through rational design and oral delivery strategies. Nutrients, 11 (10): 2545 (1-22). https://doi.org/10.3390/nu11102545. PMID: 31652543; PMCID: PMC6836114.
  • Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D. J. McClements, O. Ménard, I. Recio, C. N. Santos, R. P. Singh, G. E. Vegarud, M. S. J. Wickham, W. Weitschies‡aa & A. Brodkorb, 2014. A standardised static in vitro digestion method suitable for food - an international consensus. Food & Function, 5 (6): 1113-1124. https://doi.org/10.1039/c3fo60702j
  • Naumann, S., D. Haller, P. Eisner & U. Schweiggert-Weisz, 2020. Mechanisms of interactions between bile acids and plant compounds-a review. International Journal of Molecular Sciences, 21 (18): 6495. https://doi.org/10.3390/ijms21186495
  • Nazir, Y., S. A. Hussain, A. Abdul Hamid & Y. Song, 2018. Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. BioMed Research International, 2018: 3428437. https://doi.org/10.1155/2018/3428437
  • Nkhata, S. G., E. Ayua, E. H. Kamau & J. B. Shingiro, 2018. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 6 (8): 2446-2458. https://doi.org/10.1002/fsn3.846
  • Paéz, R., L. Lavari, G. Vinderola, G. Audero, A. Cuatrin, N. Zaritzky & J. Reinheimer, 2012. Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Research International, 48 (2): 748-754. https://doi.org/10.1016/j.foodres.2012.06.018
  • Prasadi, N. P. V. & I. J. Joye, 2020. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients, 12 (10): 3045. https://doi.org/10.3390/nu12103045
  • Samtiya, M., R. E. Aluko, T. Dhewa & J. M. Moreno-Rojas, 2021. Potential health benefits of plant food-derived bioactive components: An overview. Foods, 10 (4): 839. https://doi.org/10.3390/foods10040839.
  • Shittu, T. A. & M. O. Lawal, 2007. Factors affecting instant properties of powdered cocoa beverages. Food Chemistry, 100 (1): 91-98. https://doi.org/10.1016/j.foodchem.2005.09.013
  • Simsek, S., S. N. El, A. Kancabas Kilinc & S. Karakaya, 2014. Vegetable and fermented vegetable juices containing germinated seeds and sprouts of lentil and cowpea. Food Chemistry, 156: 289-295. https://doi.org/10.1016/j.foodchem.2014.01.095
  • Torino, M. I., R. I. Limón, C. Martínez-Villaluenga, S. Mäkinen, A. Pihlanto, C. Vidal-Valverde & J. Frias, 2013. Antioxidant and antihypertensive properties of liquid and solid-state fermented lentils. Food Chemistry, 136 (2): 1030-1037. https://doi.org/10.1016/j.foodchem.2012.09.015
  • Wendel, U., 2021. Assessing viability and stress tolerance of probiotics-A review. Frontiers in Microbiology, 12: 1-16. https://doi.org/10.3389/fmicb.2021.818468.
  • You, S., M. Yuchen, Y. Bowen, P. Wenhui, W. Qiming, D. Chao & H. Caoxing, 2022. The promotion mechanism of prebiotics for probiotics: A review. Frontiers in Nutrition, 9: 1-22. https://www.frontiersin.org/articles/10.3389/fnut.2022.1000517
  • Zubaidah, E. & W. Akhadiana, 2013. Comparative study of inulin extracts from dahlia, yam, and gembili tubers as prebiotic. Food and Nutrition Sciences, 4: 8-12. https://doi.org/10.4236/fns.2013.411A002

Tahıl bazlı fermente sinbiyotik hazır tozlar: tatlı denemesi

Yıl 2023, Cilt: 60 Sayı: 4 - Ege Üniversitesi Ziraat Fakültesi Dergisi Cilt: 60 Sayı: 4, 571 - 579, 05.01.2024
https://doi.org/10.20289/zfdergi.1336843

Öz

Amaç: Bu çalışmanın amacı, tüketicilerin fonksiyonel gıdalara artan ilgisini karşılamak için gıda ürünlerinde kullanılabilecek sinbiyotik ve probiyotik hazır toz karışımların geliştirilmesidir.
Materyal ve Yöntem: Tahıl unları (yulaf, pirinç, buğday), susam, kızılcık, kestane ve öğütülmüş çimlendirilmiş taneler (mercimek, maş fasulyesi) karıştırılarak otoklavlanmış ve Lactobacillus plantarum suşu kullanılarak fermantasyon işlemine tabi tutulmuştur. Lapanın bir kısmı konvansiyonel olarak kurutulmuş (FPT), diğer kısmına prebiyotik kaynak olarak yağsız süt tozu+fruktooligosakkarit+inülin karışımı ilave edilip, dondurarak kurutmaya (FST) tabi tutulmuştur. Probiyotiklerin gastrointestinal ortamdaki canlılığı ve in vitro sindirim sonrası anjiyotensin dönüştürücü enzim inhibisyonu ve safra bağlama kapasiteleri analiz edilmiş, hazırlanan tatlıların duyusal kabul edilebilirliği değerlendirilmiştir.
Araştırma Bulguları: FST, in vitro sindirimden sonra FPT'den daha yüksek sayıda canlı hücre içermiştir. Örneklerin relatif safra asidi bağlama ve anjiyotensin dönüştürücü enzim inhibisyon kapasiteleri, kolesterol düşürücü ve kan basıncını düzenleyici potansiyel etkileri doğrulanmıştır. Panelistler %5-15 FPT ve FST ile zenginleştirilmiş tatlı örneklerini 'beğenildi' olarak değerlendirmişlerdir.
Sonuç: Bu tozların çeşitli gıda ürünlerine entegrasyonu, tüketicilere genel sağlık hedeflerini destekleyen daha sağlıklı beslenme seçenekleri sağlayacaktır.

Kaynakça

  • Audic, J. L., B. Chaufer & G. Daufin, 2003. Non-food applications of milk components and dairy co-products: A review. EDP Sciences Journals, 83 (10): 417-438. https://doi.org/10.1051/lait:2003027
  • Blandino, A., M. E. Al-Aseeri, S. S. Pandiella, D. Cantero & C. Webb, 2003. Cereal-based fermented foods and beverages. Food Research International, 36 (6): 527-543. https://doi.org/10.1016/S0963-9969 (03)00009-7
  • Cook, M. T., G. Tzortzis, D. Charalampopoulos & V. V. Khutoryanskiy, 2012. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162 (1): 56-67. https://doi.org/10.1016/j.jconrel.2012.06.003
  • Dziedzic, K., D. Grecka, M. Kucharska & B. Przybylska, 2012. Influence of technological process during buckwheat groats production on dietary fibre content and sorption of bile acids. Food Research International, 47 (2): 279-283. https://doi.org/10.1016/j.foodres.2011.07.020
  • El, S. N. & S. Simsek, 2012. Food technological applications for optimal nutrition: An overview of opportunities for the food industry. Comprehensive Reviews in Food Science and Food Safety, 11 (1): 2-12. https://doi.org/10.1111/j.1541-4337.2011.00167.x
  • El, S. N., S. Karakaya, S. Simsek, D. Dupont, E. Menfaatli & A. Eker, 2015. In vitro digestibility of goat milk and kefir with a new standardised static digestion method (INFOGEST Cost Action) and bioactivities of the resultant peptides. Food and Function, 6:2322-2330. https://doi.org/10.1039/c5fo00357a
  • Fang, Y., C. Selomulya & X. D. Chen, 2008. On measurement of food powder reconstitution properties. Drying Technology, 26 (1): 3-14. https://doi.org/10.1080/07373930701780928
  • Granato, D., M. L. Masson & J. C. B. Riberio, 2012. Sensory acceptability and physical stability evaluation of a prebiotic soy-based dessert developed with passion fruit juice. Ciência e Tecnologia de Alimentos, 32 (1): 119-125. https://dx.doi.org/10.1590/S0101-20612012005000004
  • Jagannath, A., P. S. Raju & A. S. Bawa, 2010. Comparative evaluation of bacterial cellulose (nata) as a cryoprotectant and carrier support during the freeze-drying process of probiotic lactic acid bacteria. LWT - Food Science and Technology, 43 (8): 1197-1203. https://doi.org/10.1016/j.lwt.2010.03.009
  • Kahlon, T. S. & G. E. Smith, 2007. In vitro binding of bile acids by bananas, peaches, pineapple, grapes, pears, apricots and nectarines. Food Chemistry, 101 (3): 1046-1051. https://doi.org/10.1016/j.foodchem.2006.02.059
  • Kahlon, T. S., J. Berrios, M. C. Chiu & J. L. Pan, 2014. Relative bile acid binding potential of extruded lentil snacks. Food and Nutrition Sciences, 5 (4): 361-365. https://doi:10.4236/fns.2014.54043
  • Kahlon, T. S., M. C. M. Chiu & M. H. Chapman, 2007. Steam cooking significantly improves in vitro bile acid binding of beets, eggplant, asparagus, carrots, green beans, and cauliflower. Nutrition Research, 27 (12): 750-755. https://doi.org/10.1016/j.nutres.2007.09.011
  • Kancabas, A. & S. Karakaya, 2013. Angiotensin-converting enzyme (ACE)-inhibitory activity of boza, a traditional fermented beverage. Journal of the Science of Food and Agriculture, 93 (3): 641-645. https://doi.org/10.1002/jsfa.5883
  • Kent, R. M. & S. B. Doherty, 2014. Probiotic bacteria in infant formula and follow-up formula: Microencapsulation using milk and pea proteins to improve microbiological quality. Food Research International, 64: 567-576. https://doi.org/10.1016/j.foodres.2014.07.029
  • Kim, E. H. J., X. D. Chen & D. Pearce, 2002. Surface characterization of four industrial spray-dried powders in relation to chemical composition, structure, and wetting property. Colloids and Surface B: Biointerfaces, 26 (3): 197-212. https://doi.org/10.1016/S0927-7765 (01)00334-4
  • Lahogue, V., K. Rehel, L. Taupin, D. Haras & P. Allaume, 2010. A HPLC-UV method for the determination of angiotensin I-converting enzyme (ACE) inhibitory activity. Food Chemistry, 118 (3): 870-875. https://doi.org/10.1016/j.foodchem.2009.05.080
  • Manzanares, P., M. Gandía, S. Garrigues & J.F. Marcos, 2019. Improving health-promoting effects of food-derived bioactive peptides through rational design and oral delivery strategies. Nutrients, 11 (10): 2545 (1-22). https://doi.org/10.3390/nu11102545. PMID: 31652543; PMCID: PMC6836114.
  • Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D. J. McClements, O. Ménard, I. Recio, C. N. Santos, R. P. Singh, G. E. Vegarud, M. S. J. Wickham, W. Weitschies‡aa & A. Brodkorb, 2014. A standardised static in vitro digestion method suitable for food - an international consensus. Food & Function, 5 (6): 1113-1124. https://doi.org/10.1039/c3fo60702j
  • Naumann, S., D. Haller, P. Eisner & U. Schweiggert-Weisz, 2020. Mechanisms of interactions between bile acids and plant compounds-a review. International Journal of Molecular Sciences, 21 (18): 6495. https://doi.org/10.3390/ijms21186495
  • Nazir, Y., S. A. Hussain, A. Abdul Hamid & Y. Song, 2018. Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. BioMed Research International, 2018: 3428437. https://doi.org/10.1155/2018/3428437
  • Nkhata, S. G., E. Ayua, E. H. Kamau & J. B. Shingiro, 2018. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 6 (8): 2446-2458. https://doi.org/10.1002/fsn3.846
  • Paéz, R., L. Lavari, G. Vinderola, G. Audero, A. Cuatrin, N. Zaritzky & J. Reinheimer, 2012. Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Research International, 48 (2): 748-754. https://doi.org/10.1016/j.foodres.2012.06.018
  • Prasadi, N. P. V. & I. J. Joye, 2020. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients, 12 (10): 3045. https://doi.org/10.3390/nu12103045
  • Samtiya, M., R. E. Aluko, T. Dhewa & J. M. Moreno-Rojas, 2021. Potential health benefits of plant food-derived bioactive components: An overview. Foods, 10 (4): 839. https://doi.org/10.3390/foods10040839.
  • Shittu, T. A. & M. O. Lawal, 2007. Factors affecting instant properties of powdered cocoa beverages. Food Chemistry, 100 (1): 91-98. https://doi.org/10.1016/j.foodchem.2005.09.013
  • Simsek, S., S. N. El, A. Kancabas Kilinc & S. Karakaya, 2014. Vegetable and fermented vegetable juices containing germinated seeds and sprouts of lentil and cowpea. Food Chemistry, 156: 289-295. https://doi.org/10.1016/j.foodchem.2014.01.095
  • Torino, M. I., R. I. Limón, C. Martínez-Villaluenga, S. Mäkinen, A. Pihlanto, C. Vidal-Valverde & J. Frias, 2013. Antioxidant and antihypertensive properties of liquid and solid-state fermented lentils. Food Chemistry, 136 (2): 1030-1037. https://doi.org/10.1016/j.foodchem.2012.09.015
  • Wendel, U., 2021. Assessing viability and stress tolerance of probiotics-A review. Frontiers in Microbiology, 12: 1-16. https://doi.org/10.3389/fmicb.2021.818468.
  • You, S., M. Yuchen, Y. Bowen, P. Wenhui, W. Qiming, D. Chao & H. Caoxing, 2022. The promotion mechanism of prebiotics for probiotics: A review. Frontiers in Nutrition, 9: 1-22. https://www.frontiersin.org/articles/10.3389/fnut.2022.1000517
  • Zubaidah, E. & W. Akhadiana, 2013. Comparative study of inulin extracts from dahlia, yam, and gembili tubers as prebiotic. Food and Nutrition Sciences, 4: 8-12. https://doi.org/10.4236/fns.2013.411A002
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Süt Teknolojisi, Gıda Bilimleri (Diğer)
Bölüm Makaleler
Yazarlar

Özlem Karagül 0000-0001-5008-2989

Sedef Nehir El 0000-0002-2996-0537

Erken Görünüm Tarihi 28 Aralık 2023
Yayımlanma Tarihi 5 Ocak 2024
Gönderilme Tarihi 2 Ağustos 2023
Kabul Tarihi 5 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 60 Sayı: 4 - Ege Üniversitesi Ziraat Fakültesi Dergisi Cilt: 60 Sayı: 4

Kaynak Göster

APA Karagül, Ö., & El, S. N. (2024). Cereal-based fermented synbiotic instant powders: a dessert practice. Journal of Agriculture Faculty of Ege University, 60(4), 571-579. https://doi.org/10.20289/zfdergi.1336843

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.