Year 2020,
Volume: 1 Issue: 1, 13 - 17, 14.09.2020
Fatma Tuba Pirinç
,
Adnan Fatih Dağdelen
,
Furkan Türker Sarıcaoğlu
References
- ASTM. (2001). Standart test method for tensile properties of thin plastic sheeting. In (Vol. D882-12). Philedelphia, PA: American Society for Testing and Materials (ASTM).
- Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., & Roveri, N. (2001). Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 22(8), 763-768. doi:https://doi.org/10.1016/S0142-9612(00)00236-2
- Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J. M., & Giménez, E. (2006). Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. Macromolecular Symposia, 233(1), 191-197. doi:10.1002/masy.200690017
- Cárdenas, G., Díaz, J., Meléndrez, M., & Cruzat, C. (2008). Physicochemical properties of edible films from chitosan composites obtained by microwave heating. Polymer Bulletin, 61(6), 737-748.
- de Carvalho, R. A., & Grosso, C. R. F. (2004). Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 18(5), 717-726. doi:https://doi.org/10.1016/j.foodhyd.2003.10.005
- Gontard, N., Guilbert, S., & Cuq, J.-L. (1993). Water and Glycerol as Plasticizers Affect Mechanical and Water Vapor Barrier Properties of an Edible Wheat Gluten Film. Journal of Food Science, 58(1), 206-211. doi:https://doi.org/10.1111/j.1365-2621.1993.tb03246.x
- Gul, O., Saricaoglu, F. T., Besir, A., Atalar, I., & Yazici, F. (2018). Effect of ultrasound treatment on the properties of nano-emulsion films obtained from hazelnut meal protein and clove essential oil. Ultrasonics Sonochemistry, 41(Supplement C), 466-474. doi:https://doi.org/10.1016/j.ultsonch.2017.10.011
- Gupta, A. P., & Kumar, V. (2007). New emerging trends in synthetic biodegradable polymers – Polylactide: A critique. European Polymer Journal, 43(10), 4053-4074. doi:https://doi.org/10.1016/j.eurpolymj.2007.06.045
- Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H. W., & Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19, 31-39. doi:https://doi.org/10.1016/j.fpsl.2018.11.015
- Janjarasskul, T., & Krochta, J. M. (2010). Edible Packaging Materials. Annual Review of Food Science and Technology, 1(1), 415-448. doi:10.1146/annurev.food.080708.100836
- Jongjareonrak, A., Benjakul, S., Visessanguan, W., Prodpran, T., & Tanaka, M. (2006). Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids, 20(4), 492-501. doi:https://doi.org/10.1016/j.foodhyd.2005.04.007
- Kurt, A., & Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104(0), 50-58. doi:http://dx.doi.org/10.1016/j.carbpol.2014.01.003
- Lacroix, M., & Vu, K. D. (2014). Innovations in Food Packaging. Edible Coating and Film Materials: Proteins (Second Ed. ed.). ABD: Elsevier Academic Press.
- Lee, K.-Y., & Song, K. B. (2017). Preparation and Characterization of an Olive Flounder (Paralichthys olivaceus) Skin Gelatin and Polylactic Acid Bilayer Film. Journal of Food Science, 82(3), 706-710. doi:10.1111/1750-3841.13650
- Martino, V. P., Jiménez, A., & Ruseckaite, R. A. (2009). Processing and characterization of poly (lactic acid) films plasticized with commercial adipates. Journal of Applied Polymer Science, 112(4), 2010-2018. doi:10.1002/app.29784
- Murrieta-Martínez, C. L., Soto-Valdez, H., Pacheco-Aguilar, R., Torres-Arreola, W., Rodríguez-Felix, F., & Márquez Ríos, E. (2018). Edible protein films: Sources and behavior. Packaging Technology and Science, 31(3), 113-122. doi:10.1002/pts.2360
- Nilsuwan, K., Benjakul, S., & Prodpran, T. (2018). Physical/thermal properties and heat seal ability of bilayer films based on fish gelatin and poly(lactic acid). Food Hydrocolloids, 77, 248-256. doi:https://doi.org/10.1016/j.foodhyd.2017.10.001
- Rakotonirainy, A. M., & Padua, G. W. (2001). Effects of Lamination and Coating with Drying Oils on Tensile and Barrier Properties of Zein Films. Journal of Agricultural and Food Chemistry, 49(6), 2860-2863. doi:10.1021/jf000845u
- Rivero, S., García, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531-539. doi:http://doi.org/10.1016/j.jfoodeng.2008.07.021
- Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R., Martín-Belloso, O., Pan, Z., & McHugh, T. H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering, 81(3), 634-641. doi:http://dx.doi.org/10.1016/j.jfoodeng.2007.01.007
- Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:https://doi.org/10.1016/j.carbpol.2016.03.051
- Saricaoglu, F. T., Tural, S., Gul, O., & Turhan, S. (2018). High pressure homogenization of mechanically deboned chicken meat protein suspensions to improve mechanical and barrier properties of edible films. Food Hydrocolloids, 84, 135-145. doi:https://doi.org/10.1016/j.foodhyd.2018.05.058
- Silva, F. M., & Silva, C. L. M. (1999). Colour changes in thermally processed cupuaçu (Theobroma grandiflorum) puree: critical times and kinetics modelling. International Journal of Food Science & Technology, 34(1), 87-94. doi:10.1046/j.1365-2621.1999.00246.x
- Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2013). Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. Journal of Food Engineering, 117(3), 350-360. doi:http://dx.doi.org/10.1016/j.jfoodeng.2013.03.005
- Wu, J., Sun, X., Guo, X., Ge, S., & Zhang, Q. (2017). Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4), 185-192. doi:https://doi.org/10.1016/j.aaf.2017.06.004
Optical and mechanical properties of bi-layer biodegradable films from poly lactic acid and bovine gelatin
Year 2020,
Volume: 1 Issue: 1, 13 - 17, 14.09.2020
Fatma Tuba Pirinç
,
Adnan Fatih Dağdelen
,
Furkan Türker Sarıcaoğlu
Abstract
In this study, the development of bilayer films with bovine gelatin (BG) and poly lactic acid (PLA) was investigated, and the effect of gelatin layer thickness on optical and mechanical properties of bi-layer films was evaluated. BG incorporated PLA films didn’t separate from each other during mechanical analyses, which means uniform film structure was obtained. The L* values significantly decreased, whereas a* and b* values increased when compared with neat PLA film. The color differences of bi-layer films were classified between “very distinct and great” depending on the thickness of BG layer. The lowest opacity was obtained from neat PLA film, and increasing thickness of BG layer increased opacity due to yellowish color. The lamination of neat PLA with BG in varied thickness caused a significant decrease in UV and visible light transmission. Tensile strength of neat PLA film was significantly decreased by the lamination with BG, whereas elongation at break values increased, probably due to plasticizer addition to BG film. Similar tendency was observed for puncture force and puncture deformation values. It can be concluded from these results that the lamination of PLA films with BG decreased the mechanical properties, whereas improved the UV light barrier properties of neat PLA film.
References
- ASTM. (2001). Standart test method for tensile properties of thin plastic sheeting. In (Vol. D882-12). Philedelphia, PA: American Society for Testing and Materials (ASTM).
- Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., & Roveri, N. (2001). Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 22(8), 763-768. doi:https://doi.org/10.1016/S0142-9612(00)00236-2
- Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J. M., & Giménez, E. (2006). Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. Macromolecular Symposia, 233(1), 191-197. doi:10.1002/masy.200690017
- Cárdenas, G., Díaz, J., Meléndrez, M., & Cruzat, C. (2008). Physicochemical properties of edible films from chitosan composites obtained by microwave heating. Polymer Bulletin, 61(6), 737-748.
- de Carvalho, R. A., & Grosso, C. R. F. (2004). Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 18(5), 717-726. doi:https://doi.org/10.1016/j.foodhyd.2003.10.005
- Gontard, N., Guilbert, S., & Cuq, J.-L. (1993). Water and Glycerol as Plasticizers Affect Mechanical and Water Vapor Barrier Properties of an Edible Wheat Gluten Film. Journal of Food Science, 58(1), 206-211. doi:https://doi.org/10.1111/j.1365-2621.1993.tb03246.x
- Gul, O., Saricaoglu, F. T., Besir, A., Atalar, I., & Yazici, F. (2018). Effect of ultrasound treatment on the properties of nano-emulsion films obtained from hazelnut meal protein and clove essential oil. Ultrasonics Sonochemistry, 41(Supplement C), 466-474. doi:https://doi.org/10.1016/j.ultsonch.2017.10.011
- Gupta, A. P., & Kumar, V. (2007). New emerging trends in synthetic biodegradable polymers – Polylactide: A critique. European Polymer Journal, 43(10), 4053-4074. doi:https://doi.org/10.1016/j.eurpolymj.2007.06.045
- Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H. W., & Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19, 31-39. doi:https://doi.org/10.1016/j.fpsl.2018.11.015
- Janjarasskul, T., & Krochta, J. M. (2010). Edible Packaging Materials. Annual Review of Food Science and Technology, 1(1), 415-448. doi:10.1146/annurev.food.080708.100836
- Jongjareonrak, A., Benjakul, S., Visessanguan, W., Prodpran, T., & Tanaka, M. (2006). Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids, 20(4), 492-501. doi:https://doi.org/10.1016/j.foodhyd.2005.04.007
- Kurt, A., & Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104(0), 50-58. doi:http://dx.doi.org/10.1016/j.carbpol.2014.01.003
- Lacroix, M., & Vu, K. D. (2014). Innovations in Food Packaging. Edible Coating and Film Materials: Proteins (Second Ed. ed.). ABD: Elsevier Academic Press.
- Lee, K.-Y., & Song, K. B. (2017). Preparation and Characterization of an Olive Flounder (Paralichthys olivaceus) Skin Gelatin and Polylactic Acid Bilayer Film. Journal of Food Science, 82(3), 706-710. doi:10.1111/1750-3841.13650
- Martino, V. P., Jiménez, A., & Ruseckaite, R. A. (2009). Processing and characterization of poly (lactic acid) films plasticized with commercial adipates. Journal of Applied Polymer Science, 112(4), 2010-2018. doi:10.1002/app.29784
- Murrieta-Martínez, C. L., Soto-Valdez, H., Pacheco-Aguilar, R., Torres-Arreola, W., Rodríguez-Felix, F., & Márquez Ríos, E. (2018). Edible protein films: Sources and behavior. Packaging Technology and Science, 31(3), 113-122. doi:10.1002/pts.2360
- Nilsuwan, K., Benjakul, S., & Prodpran, T. (2018). Physical/thermal properties and heat seal ability of bilayer films based on fish gelatin and poly(lactic acid). Food Hydrocolloids, 77, 248-256. doi:https://doi.org/10.1016/j.foodhyd.2017.10.001
- Rakotonirainy, A. M., & Padua, G. W. (2001). Effects of Lamination and Coating with Drying Oils on Tensile and Barrier Properties of Zein Films. Journal of Agricultural and Food Chemistry, 49(6), 2860-2863. doi:10.1021/jf000845u
- Rivero, S., García, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531-539. doi:http://doi.org/10.1016/j.jfoodeng.2008.07.021
- Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R., Martín-Belloso, O., Pan, Z., & McHugh, T. H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering, 81(3), 634-641. doi:http://dx.doi.org/10.1016/j.jfoodeng.2007.01.007
- Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:https://doi.org/10.1016/j.carbpol.2016.03.051
- Saricaoglu, F. T., Tural, S., Gul, O., & Turhan, S. (2018). High pressure homogenization of mechanically deboned chicken meat protein suspensions to improve mechanical and barrier properties of edible films. Food Hydrocolloids, 84, 135-145. doi:https://doi.org/10.1016/j.foodhyd.2018.05.058
- Silva, F. M., & Silva, C. L. M. (1999). Colour changes in thermally processed cupuaçu (Theobroma grandiflorum) puree: critical times and kinetics modelling. International Journal of Food Science & Technology, 34(1), 87-94. doi:10.1046/j.1365-2621.1999.00246.x
- Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2013). Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. Journal of Food Engineering, 117(3), 350-360. doi:http://dx.doi.org/10.1016/j.jfoodeng.2013.03.005
- Wu, J., Sun, X., Guo, X., Ge, S., & Zhang, Q. (2017). Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4), 185-192. doi:https://doi.org/10.1016/j.aaf.2017.06.004