Review
BibTex RIS Cite

Spirulina platensis ve Phaeodactylum tricornutum’un Biyoaktif Bileşikleri, Sağlık Üzerine Etkileri ve Gıda Endüstrisinde Kullanım Alanları

Year 2023, Volume: 1 Issue: 1, 15 - 26, 29.09.2023

Abstract

Nüfus artışı, yetersiz ve dengesiz beslenme, sağlık problemlerinin artması insanları mevcut kaynakları kullanmaya ve alışılmadık yeni ve alternatif gıda kaynaklarından yararlanmaya sevk etmiştir. Mikroalgler, okyanuslarda, göllerde ve tatlı sularda doğal olarak büyümeleri ve beslenme için gerekli olan proteinleri, esansiyel amino asitleri, karbonhidratları, lipidleri, vitaminleri ve mineral maddeleri içermesi nedeniyle uzun yıllardır dünyanın birçok yerinde insanlar için geçim kaynaklarından ve temel besinlerden biri olmuştur. Tek hücreli, filamentli, prokaryotik bir mikroalg olan Spirulina platensis, eski zamanlardan beri kullanılan önemli bir doğal besin kaynağıdır. Phaeodactylum tricornutum ise, tatlı su türü olmasına rağmen denizel ortamda da yaşayan Pennateae grubuna ait tek hücreli ökaryotik bir diatom türüdür. Spirulina platensis ve Phaeodactylum tricornutum zengin biyoaktif bileşikler (karotenoidler ve fenolik asitler) içermesinden dolayı son zamanlarda dikkat çekmektedir. İçerdiği biyoaktif bileşikler nedeniyle antikanser, antioksidan, antienflamatuar, nöroprotektif, hepatoprotektif, hipokolesterolemik özelliklere sahip olduğu bilinmektedir. Bu derlemede, Spirulina platensis ve Phaeodactylum tricornutum tarafından üretilen biyoaktif bileşikler, sağlık üzerine etkileri ve bunların gıda endüstrisinde kullanım potansiyelleri incelenmiştir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Project Number

120O858

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK, Proje no: 120O858) tarafından finansal olarak desteklenmiştir.

References

  • Alajil Alslibi, Z. (2019). Influence of Spirulina and whey protein hydrolysate on growth rate and activity of some probiotic bacteria in ayran. Master of Science Thesis, Gaziantep University, Graduate School of Natural Sciences, Department of Biochemistry Science and Technology, Turkey.
  • Albright, A. (2008). Biological and social exposures in youth set the stage for premature chronic diseases. Journal of the American Dietetic Association, 108, 1843–1845. doi: 10.1016/j.jada.2008.09.017
  • Aouir, A., Amiali, M., Bitam, A., Benchabane, A., Raghavan, V. G. (2017). Comparison of the biochemical composition of different Arthrospira platensis strains from Algeria, Chad and the USA. Journal of Food Measurement and Characterization, 11, 913−23. doi:10.1007/s11694-016-9463-4
  • Arnhold Pagnussatt, F., Medeiros Del Ponte, E., Garda-Buffon, J., Badiale-Furlong, E. (2014). Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pesticide Biochemistry and Physiology, 108, 21–6. doi: 10.1016/j.pestbp.2013.11.002.
  • Arranz, S., Silván, J. M., Saura‐Calixto, F. (2010). Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Molecular Nutrition & Food Research, 54(11), 1646-1658. doi: 10.1002/mnfr.200900580.
  • Bae M., Kim M. B., Park Y. K., Lee J. Y. (2020). Health benefits of fucoxanthin in the prevention of chronic diseases. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipid, 1865(11), 158618. doi: 10.1016/j.bbalip.2020.158618.
  • Bartual, A., Villazan, B., Brun, F. G. (2011). Monitoring the long-term stability of pelagic morphotypes in the model diatom Phaeodactylum tricornutum. Diatom Research, 26, 243–253.doi: 10.1080/0269249X.2011.619365
  • Bashir, S., Sharif, M.K., Butt, M.S., Shahid, M. (2016). Functional properties and amino acid profile of Spirulina platensis protein isolates. Biological Sciences - PJSIR 59, 12–19.
  • Becker, W. (2004). Microalgae for aquaculture: the nutritional value of microalgae for aquaculture. In: Richmond, A. (eds.): Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford, 380-391. Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25, 207–210. doi: 10.1016/j.biotechadv.2006.11.002
  • Begum, H., Yusoff, F. M., Banerjee, S., Khatoon, H., Shariff, M. (2016). Availability and utilization of pigments from microalgae, Critical Reviews in Food Science and Nutrition, 56(13), 2209-2222. doi: 10.1080/10408398.2013.764841
  • Beheshtipour, H., Mortazavian, A.M., Haratian, P., Darani, K.K. (2012). Effect of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235(4), 719–728. doi: 10.1007/s00217-012-1798-4
  • Bertrand M. (2010). Carotenoid Biosynthesis in Diatoms. Photosynthesis Research, 106, 89–102. doi: 10.1007/s11120-010-9589-x
  • Borowitzka, M. A., Chiappino, M. L., Volcani, B. E. (1977). Ultrastructure of a chain-forming diatom Phaeodactylum tricornutum. Journal of Phycology, 13(2), 162–170. doi: 10.1111/j.1529-8817.1977.tb02906.x
  • Borowitzka, M. A., Volcani, B. E. (1978). The polymorphic diatom Phaeodactylum tricornutum: ultrastructure of its morphotypes, Journal of Phycology, 14(1), 10–21.
  • Bresson J.L., Fairweather-Tait S., Flynn A., Golly I., Korhonen H., Lagiou P., Løvik M., Marchelli R., Martin A., Moseley B. (2010). Scientific opinion on dietary reference values for fats, ıncluding saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal, 8, 1461. doi:10.2903/j.efsa.2010.1461.
  • Britton, G., Liaaen-Jensen, S., Pfander, H. (Eds.). (2004). Carotenoids.
  • Butler, T., Kapoore, R.V., Vaidyanathan, S. (2020). Phaeodactylum tricornutum: A diatom cell factory. Trends in Biotechnology, 38, 606–622. doi: 10.1016/j.tibtech.2019.12.023.
  • Caballero M.A., Jallet D., Shi L., Rithner C., Zhang Y., Peers G. (2016). Quantification of chrysolaminarin from the model diatom Phaeodactylum tricornutum. Algal Research, 20, 180–188. doi:10.1016/j.algal.2016.10.008
  • Chen, Z., Yang, M., Li, C., Wang, Y., Zhang, J., Wang, D., Ge, F. (2014). Phosphoproteomic analysis provides novel ınsights into stress responses in Phaeodactylum tricornutum, a model diatom. Journal of Proteome Research, 13(5), 2511–2523. doi: 10.1021/pr401290u.
  • Chen, Y., Li, F., Li, J., Li, Y., Yang, S., Zhang, X., Liu, G. (2021). Beneficial effects of Spirulina platensis on glycemic control and lipid profiles in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Nutrition Journal, 20(1), 1-13.
  • Chen, X., Yang, Y., Wei, D., Liu, J., Liu, X., Huang, F., Sun, J. (2022). Lipidomic profiling of Phaeodactylum tricornutum under different light intensities and its potential health benefits. Food Chemistry, 372, 131388.
  • Chethana, S., Nayak, C.A., Madhusudhan, M.C., Raghavarao, K. S. M. C. (2015). Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis. Journal of Food Science and Technology, 52, 2415–2421. doi: 10.1007/s13197-014-1287-9.
  • Chuberre C, Chan P, Walet-Balieu ML, Thiébert F, Burel C, Hardouin J, Gügi B, Bardor M. (2022). Comparative proteomic analysis of the Diatom Phaeodactylum tricornutum reveals new ınsights ınto ıntra- and extra-cellular protein contents of ıts oval, fusiform, and triradiate morphotypes. Frontiers in Plant Science, 13, 385. doi: 10.3389/fpls.2022.673113
  • Ciecierska A., Drywień M.E., Hamulka J., Sadkowski T. (2019). Nutraceutical functions of beta-glucans in human nutrition. Roczniki Panstwowego Zakladu Higieny, 70, 315–324. doi: 10.32394/rpzh.2019.0082.
  • Colla, L. M., Reinehr, O. C., Reichert, C., Costa, J. A. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98, 1489–1493. doi:10.1016/j.biortech.2005.09.030
  • Czerwonka, A., Kaławaj, K., Sławińska-Brych, A., Lemieszek, M.K., Bartnik, M., Wojtanowski, K.K., Zdzisińska, B., Rzeski, W. (2018). Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomedicine & Pharmacotherapy, 106, 292-302.
  • De la Jara, A., Ruano-Rodriguez, C., Polifrone, M., Assunçao, P., Brito-Casillas, Y., Wägner, A.M., Majem, L.S. (2018). Impact of dietary Arthrospira (Spirulina) biomass consumption on human health: main health targets and systematic review. Journal of Applied Phycology, 30(4), 2403-2423. doi:10.1007/s10811-018-1468-4
  • De Martino, A., Bartual, A., Willis, A., Meichenin, A., Villazan, B. (2011). Physiological and molecular evidence that environmental changes elicit morphological ınterconversion in the model diatom Phaeodactylum tricornutum, Protist, 162, 462–481. doi: 10.1016/j.protis.2011.02.002.
  • Dean, A. P., Estrada, B., Nicholson, J. M., Sigee, D. C. (2008). Molecular response ofAnabaena flos-aquaeto differing concentrations of phosphorus: A combined Fourier transform infrared and X-ray microanalytical study. Phycological Research, 56(3), 193–201. doi: 10.1111/j.1440-1835.2008.00501.x
  • Del Mondo, A., Smerilli, A., Sané, E., Sansone, C., Brunet, C. (2020). Challenging microalgal vitamins for human health. Microbial Cell Factories, 19(1). doi: 10.1186/s12934-020-01459-1
  • Dembitsky, V.M., Maoka, T. (2007). Allenic and cumulenic lipids. Progress in Lipid Research, 46, 328–375. doi: 10.1016/j.plipres.2007.07.001
  • El-Sheekh, M., Abomohra, A.E.F. (2020). The therapeutic potential of Spirulina to combat COVID-19 infection. Egyptian Journal of Botany, 60(3), 605-609. doi: 10.21608/EJBO.2020.49345.1581
  • F. A. O. (2008). A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. ed. M. A. B Habib, M. Parvin, T. C. Huntington and M. R. Hasan, FAO Fisheries and Aquaculture Circular. no. 1034. Rome, FAO, 33.
  • F. A. O. (2010). Algae-based biofuels: applications and co-products. Ed. Sjors van Iersel & Alessandro Flammini. FAO Environmental and Natural Resources Service Series, No. 44, Rome 2010.
  • Fajardo, A.R., Cerdan, L.E., Medina, A.R., Fernández, F.G.A., Moreno, P.A.G., Grima E.M. (2007). Lipid extraction from the microalga Phaeodactylum tricornutum. European Journal of Lipid Science and Technology, 109, 120-6. doi:10.1002/EJLT.200600216
  • Fazilati, M., Mohammadi, N., Sedighi, M., Asemi, Z. (2021). The effect of Spirulina supplementation on metabolic status, liver enzymes, inflammation, and antioxidant capacity in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition ESPEN, 44, 46-52.
  • Ferreres, F., Lopes, G., Gil-Izquierdo, A., Andrade, P. B., Sousa, C., Mouga, T., Valentão, P. (2012). Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties. Marine Drugs, 10, 2766-2781. doi: 10.3390/md10122766.
  • Foo, S. C., Yusoff, F. M., Ismail, M., Basri, M., Yau, S. K., Khong, N. M. H., Ebrahimi, M. (2017). Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. Journal of Biotechnology, 241, 175–183. doi: 10.1016/j.jbiotec.2016.11.026.
  • Ford, C.W., Percival, E. (1965). (1) Carbohydrates of Phaeodactylum tricornutum. Part I. A sulphated glucuronomannan. Journal of the Chemical Society Home, 7035–7041.
  • Ford, C.W., Percival, E. (1965). (2) Carbohydrates of Phaeodactylum tricornutum. Part II. A sulphated glucuronomannan. Journal of the Chemical Society Home, 7042–7046.
  • Fox, D. (1996). Spirulina: Production and Potential. Pub. By Editions Edisud, La Calade, R.N.7, 13090 Aix-en-Province, FRANCE, 232.
  • Gao B., Chen A., Zhang W., Li A., Zhang C. (2017). Co-Production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. Journal of Ocean University of China, 16, 916–924. doi:10.1007/s11802-017-3174-2
  • García J.L., de Vicente M., Galán B. (2017). Microalgae, old sustainable food and fashion 500 nutraceuticals. Microbial Biotechnology, 10, 1017–1024. doi: 10.1111/1751-7915.12800.
  • García-Villalobos, H., Santos-López, J. A., López-Martínez, L. X. (2020). Spirulina platensis extracts inhibit the production of pro-inflammatory cytokines and oxidative stress induced by lipopolysaccharide in RAW 264.7 macrophages. Journal of Functional Foods, 66, 103797.
  • Gargouri, M., Ben Ahmed, M., Ali, M. B., & Akrout, F. M. (2020). Spirulina platensis ameliorates oxidative stress, inflammation and lipid profile in rats fed with high-fat and high-fructose diet. Journal of Food Biochemistry, 44(8), e13328.
  • Gelzinis, A., Butkus, V., Songaila, E., Augulis, R., Gall, A., Büchel, C., Robert, B., Abramavicius, D., Zigmantas, D., Valkunas, L. (2015). Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex. Biochimica et Biophysica Acta, 1847, 241–247. doi: 10.1016/j.bbabio.2014.11.004
  • German-Báez, L., Valdez-Flores, M., Félix-Medina, J., Norzagaray-Valenzuela, C., Santos-Ballardo, D., Reyes-Moreno, C. Valdez-Ortiz, A. (2017). Chemical composition and physicochemical properties of Phaeodactylum tricornutum microalgal residual biomass. Food Science and Technology International, 23(8), 681–689. doi:10.1177/1082013217717611
  • Goiris, K., Muylaert, K., Voorspoels, S., Noten, B., De Paepe, D., E Baart, G. J., De Cooman, L. (2014). Detection of flavonoids in microalgae from different evolutionary lineages. Journal of Phycology, 50(3), 483–492. doi: 10.1111/jpy.12180.
  • Guil-Guerrero JL, Navarro-Jua´rez R, Lo´pez-Martı´nez JC, Campra-Madrid P and Rebolloso-Fuentes MM. (2004). Functional properties of the biomass of three microalgal species. Journal of Food Engineering, 65, 511–551. doi:10.1016/j.jfoodeng.2004.02.014
  • Han, J., Shi, Y., Liu, J., Guo, Y. (2020). A comparison of the nutrient compositions and antioxidant activities of three microalgae: Phaeodactylum tricornutum, Nannochloropsis oceanica, and Isochrysis galbana. Journal of Applied Phycology, 32(3), 1697-1707.
  • Haoujar, I., Cacciola, F., Abrini, J., Mangraviti, D., Giuffrida, D., Oulad El Majdoub, Y., Skali Senhaji, N. (2019). The contribution of carotenoids, phenolic compounds, and flavonoids to the antioxidative properties of marine microalgae ısolated from Mediterranean Morocco. Molecules, 24(22), 4037. doi: 10.3390/molecules24224037.
  • He, L., Han, X., and Yu, Z. (2014). A rare Phaeodactylum tricornutum cruciform morphotype: Culture conditions, transformation and unique fatty acid characteristics. PLoS One, 9(4). doi:10.1371/journal.pone.0093922
  • Heffernan, N., Brunton, N. P., FitzGerald, R. J., Smyth, T. J. (2015). Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Marine Drugs, 13, 509-528. doi: 10.3390/md13010509
  • Henrikson, R. (2000). Earth food Spirulina: essential fatty acids and phytonutrients. Ronore enterprises. Inc., Laguna Beach.
  • Hernández-Ledesma, B., Herrero, M. (2013). Bioactive compounds from marine foods: plant and animal sources. John Wiley & Sons: Madrid, Spain, ISBN 1-118-41287-7.
  • Ismaiel, M. M. S., Piercey‐Normore, M. D. (2020). Gene transcription and antioxidants production in Arthrospira (Spirulina) platensis grown under temperature variation. Journal of Applied Microbiology. doi: 10.1111/jam.14821.
  • Iwamoto, H. (2004). Industrial production of microalgal cell-mass and secondary products-major industrial species- Chlorella. In Richmond, A. (ed.), Handbook of microalgal culture. Blackwell, Oxford, 255–263.
  • Jayachandran M., Chen J., Chung S.S.M., Xu B. (2018). A critical review on the Impacts of β-Glucans on gut microbiota and human health. The Journal of Nutritional Biochemistry, 61, 101–110. doi: 10.1016/j.jnutbio.2018.06.010.
  • Kadenbach, B., Ramzan, R., Vogt, S. (2009). Degenerative diseases, oxidative stress and cytochrome c oxidase function. Trends in Molecular Medicine, 15, 139–147. doi: 10.1016/j.molmed.2009.02.004.
  • Kato, T., Arakawa, M., Saito, M., & Ishihara, K. (2020). Effect of oral intake of Spirulina platensis on atopic dermatitis and other allergic diseases in humans: a retrospective study. Journal of Medicinal Food, 23(2), 128-135.
  • Kim J.H., Kim S.M., Cha K.H., Mok I.-K., Koo S.Y., Pan C.-H., Lee J.K. (2016). Evaluation of the anti-obesity effect of the microalga Phaeodactylum tricornutum. Applied Biological Chemistry, 59, 283–290. doi:10.1007/s13765-016-0151-1
  • Klejdus, B., Kopecký, J., Benešová, L., Vacek, J. (2009). Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. Journal of Chromatography A, 1216(5), 763–771. doi: 10.1016/j.chroma.2008.11.096.
  • Kuczynska, P., Jemiola-Rzeminska, M., Strzalka, K. (2015). Photosynthetic pigments in diatoms. Marine Drugs, 13(9), 5847–5881. doi: 10.3390/md13095847
  • Kuddus, M., Singh, P., Thomas, G., Ali, A. (2015). Production of C-phycocyanin and its potential applications. Biotechnology of Bioactive Compounds, 283–299. doi:10.1002/9781118733103.CH12
  • Laurienzo, P. (2010). Marine polysaccharides in pharmaceutical applications: An overview. Marine Drugs 8, 2435–2465. doi: 10.3390/md8092435
  • Le Costaouec, T., Unamunzaga, C., Mantecon, L., and Helbert, W. (2017). New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Research-Biomass Biofuels Bioproducts, 26, 172–179. doi:10.1016/j.algal.2017.07.021
  • Li, Y., Qin, J. G., Moore R. B., Ball, A. S. (2009). Perspectives of marine phytoplankton as a source of nutrition and bioenergy, in Marine phytoplankton, Nova Science Pub Inc., 187–202.
  • Martin-Girela, I., Albero, B., Tiwari, B.K., Miguel, E., Aznar, R. (2020). Screening of Contaminants of Emerging Concern in Microalgae Food Supplements. Separations, 7(2), 28.doi: 10.3390/separations7020028
  • Mathur, M. (2018). Bioactive molecules of Spirulina: a food supplement. Bioactive Molecules in Food, 1-22. doi:10.1007/978-3-319-54528-8_97-1
  • Mazo, V. K., Gmoshinskiĭ, I. V., Zilova, I. S. (2004). Microalgae Spirulina in human nutrition, Voprosy Pitaniia, 73(1) 45-53.
  • Mikami, K., Hosokawa, M. (2013). Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 14, 13763–13781. doi: 10.3390/ijms140713763
  • Moradi, S., Ziaei, R., Foshati, S., Mohammadi, H., Nachvak, S.M., Rouhani, M.H. (2019). Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complementary Therapies in Medicine, 47, 102211. doi: 10.1016/j.ctim.2019.102211.
  • Moraes, P. C., Noce, C. W., Thomaz, L. A., Cintra M. L., & Correa, M. E. (2011). Pigmented lichenoid drug eruption secondary to chloroquine therapy: an unusual presentation in lower lip. Minerva Stomatologica, 60, 32–327.
  • Muller-Feuga, A. (1996). Microalgues marines. Les enjeux de la recherche. Institut Français de Recherche pour l’Exploitation de la Mer, Plouzané.
  • Nayak, B., Liu, R. H., Tang, J. (2015). Effect of processing on phenolic antioxidants of fruits, vegetables, and grains-a review. Critical Reviews in Food Science and Nutrition, 55(7), 887-918. doi: 10.1080/10408398.2011.654142.
  • Neumann, U., Derwenskus, F., Flaiz Flister, V., Schmid-Staiger, U., Hirth, T., Bischoff, S. (2019). Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants, 8(6), 183. doi: 10.3390/antiox8060183
  • Ogbonda, K. H., Aminigo, R. E., Abu, G. O. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource Technology, 98, 2207−11. doi: 10.1016/j.biortech.2006.08.028.
  • Park, W. S., Kim, H. J., Li, M., Lim, D. H., Kim, J., Kwak, S. S., Kang, C. M., Ferruzzi, M. G., Ahn, M. J. (2018). Two Classes of pigments, carotenoids and C-Phycocyanin, in Spirulina powder and their antioxidant activities. Molecules (Basel, Switzerland), 23(8), 2065. doi: 10.3390/molecules23082065.
  • Peng J., Yuan J.P., Wu C.F., Wang J.H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs, 9, 1806–1828. doi: 10.3390/md9101806
  • Pereira, L., Magalhaes, J. (2014). Neto, Marine Algae, Biodiversity, Taxonomy, Environmental Assessment, and Biotechnology, CRC Press.
  • Piñero Estrada, J., Bermejo Besco´s, P., Villar del Fresno, A. M. (2001). Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco, 56(5-7), 497–500. doi: 10.1016/s0014-827x(01)01084-9.
  • Pugh, N., Ross, S. A., Elsohly, H. N., Elsohly, M. A., Pasco, D. S. (2001). Isolation of three weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aguae and Chlorella pyrenoidosa. Planta Medica, 67, 737-742. doi: 10.1055/s-2001-18358.
  • Pyne, P. K., Bhattacharjee, P., Srivastav, P. P. (2017). Microalgae (Spirulina platensis) and its bioactive molecules: review. Indian Journal of Nutrition, 4(2), 160.
  • Reboleira, J., Freitas, R., Pinteus, S., Silva, J., Alves, C., Pedrosa, R., Bernardino, S. (2019). Spirulina in nonvitamin and nonmineral nutritional supplements. Academic Press, 409-413.
  • Rebolloso-Fuentes, M.M., Navarro-Pérez, A., Ramos-Miras, J.J., Guil-Guerrero, J.L. (2001). Biomass nutrient profiles of the microalga Phaeodactylum tricornutum. Journal of Food Biochemistry, 25, 57–76. doi: 10.1021/jf0010376.
  • Richmond, A. (1986). Outdoor mass cultures of microalgae. (A. Richmond Editör). Handbook of Microalgal Mass Cultures of Microalgae. CRC Press, INC. Boca Raton, Florida. 285-329.
  • Richmond, A. (2004). Handbook of microalgal culture, Biotechnology and Applied Phycology, 444. doi:10.1002/9781118567166
  • Rico, M., López, A., Santana-Casiano, J. M., Gonzàlez, A. G., Gonzàlez-Dàvila, M. (2012). Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnology and Oceanography, 58(1), 144–152. doi:10.4319/lo.2013.58.1.0144
  • Rodriguez De Marco, E., Steffolani, M. E., Martinez, C. S., Leon, A. E. (2014). Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT - Food Science and Technology, 58, 102−108. doi:10.1016/j.lwt.2014.02.054
  • Rodríguez-Hernández, A., Ble-Castillo, J. L., Juárez-Oropeza, M. A., Díaz-Zagoya, J. C. (2022). Effect of Spirulina platensis on lipid profile, glucose metabolism, and antioxidant capacity in overweight and obese subjects: a systematic review and meta-analysis. Journal of Medicinal Food, 25(1), 3-13.
  • Saranraj, P., Sivasakthi, S. (2014). Spirulina platensis – food for future: a review. Asian Journal of Pharmaceutical Science & Technology, 4(1), 26-33.
  • Saura-Calixto, F. (2012). Concept and healthrelated properties of nonextractable polyphenols: the missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60(45), 11195-11200. doi:10.1021/jf303758j
  • Scaglioni, P. T., Quadros, L., de Paula, M., Furlong, V. B., Abreu, P. C., Badiale-Furlong, E. (2018). Inhibition of enzymatic and oxidative processes by phenolic extracts from Spirulina sp. and Nannochloropsis sp. Food Technology and Biotechnology, 56(3), 344-353. doi: 10.17113/ftb.56.03.18.5495.
  • Shahidi, F., Yeo, J. (2016). Insoluble-bound phenolics in food. Molecules, 21(9), 1216. doi: 10.3390/molecules21091216.
  • Shibata, N., Kobayashi, M. (2008). The role for oxidative stress in neurodegenerative diseases. Brain Nerve, 60, 157–170.
  • Souza, M. M., Prieto, L., Ribeiro, A. C., Souza, T. D., Badiale-Furlong E. (2011). Assesment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Ciencia E Agrotecnologia, 35(6), 1050–8. doi:10.1590/S1413-70542011000600003
  • Sun, L., Zou, T., Chen, W., Chen, H. (2020). Extraction optimization, characterization, and antioxidant activity of polysaccharides from Phaeodactylum tricornutum. International Journal of Biological Macromolecules, 145, 670-677.
  • Sun, P., Zhu, L. (2021). Evaluation of the antibacterial activity and mechanisms of Phaeodactylum tricornutum extracts. Marine Drugs, 19(9), 489.
  • Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., Kuča, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology, 90(8), 1817–1840. doi: 10.1007/s00204-016-1744-5.
  • Xia S., Wang K., Wan L., Li A., Hu Q., Zhang C. (2013). Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine Drugs, 11, 2667-2881. doi: 10.3390/md11072667.
  • Yousefi, R., Saidpour, A., Mottaghi, A. (2019). The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation and related inflammatory markers: A systematic review. Complementary therapies in medicine, 42, 137- 144. doi: 10.1016/j.ctim.2018.11.013.
  • Zhang, H., Tang, Y., Zhang, Y., Zhang, S., Qu, J., Wang, X., Liu, Z. (2015). Fucoxanthin: A Promising medicinal and nutritional ingredient. Evidence-Based Complementary and Alternative Medicine, 1–10. doi: 10.1155/2015/723515
  • Zhang, Y., Ma, X., Zhao, X., Hao, Y. (2020). Extraction optimization, structural characterization and in vitro antioxidant activity of polysaccharides from Phaeodactylum tricornutum. International Journal of Biological Macromolecules, 154, 427-435.
  • Zhao, B., Cui, Y., Fan, X., Qi, P., Liu, C., Zhou, X., Zhang, X. (2019). Antiobesity effects of Spirulina platensis protein hydrolysate by modulating brainliver axis in high-fat diet fed mice. PLoS One, 14(6), e0218543. doi:10.1371/journal.pone.0218543
  • Zhou, P., Yang, X-L., Wang, X.G., Hu, B., Zhang L., Zhang, W., Si, H., Zhu, Y., Li B., Huang, C., Chen, H., Luo, Y., Gou, H., Jiang, R., Liu, M., Chen, Y., Shen, X., Wang, X., Zheng, X., Zhao, K., Chen, Q., Deng, F., Liu, L., Yan, B., Zhan, F., Wang, Y., Xiao, G., Shi, Z. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270-273. doi: 10.1038/s41586-020-2012-7.
  • Zhu F., Du B., Xu B. (2016). A Critical review on production and ındustrial applications of Beta-Glucans. Food Hydrocolloids, 52, 275–288. doi:10.1016/j.foodhyd.2015.07.003

Bioactive Compounds of Spirulina platensis and Phaeodactylum tricornutum, Effects on Health and Uses in the Food Industry

Year 2023, Volume: 1 Issue: 1, 15 - 26, 29.09.2023

Abstract

Population growth, inadequate and unbalanced nutrition, and increased health problems have led people to use existing resources and to benefit from unusual new and alternative food sources. Microalgae have been one of the main sources of food and livelihood for humans in many parts of the world for many years since they contain proteins, essential amino acids, carbohydrates, lipids, vitamins, and minerals necessary for their nutrition and growing naturally in oceans, lakes, and fresh waters. Spirulina platensis, a single-celled, filamentous, prokaryotic microalgae, is an incredible natural food source that has been used since ancient times. Phaeodactylum tricornutum is a single-celled eukaryotic diatom species belonging to the Pennateae group, which also lives in the marine environment although it is a freshwater species. Spirulina platensis and Phaeodactylum tricornutum have recently attracted attention due to their rich bioactive compounds (carotenoids and phenolic acids). It is known to have anticancer, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective, and hypocholesterolemic properties due to its bioactive compounds. In this review, the bioactive compounds produced by Spirulina platensis and Phaeodactylum tricornutum, their effects on health, and their potential for use in the food industry were investigated.

Project Number

120O858

References

  • Alajil Alslibi, Z. (2019). Influence of Spirulina and whey protein hydrolysate on growth rate and activity of some probiotic bacteria in ayran. Master of Science Thesis, Gaziantep University, Graduate School of Natural Sciences, Department of Biochemistry Science and Technology, Turkey.
  • Albright, A. (2008). Biological and social exposures in youth set the stage for premature chronic diseases. Journal of the American Dietetic Association, 108, 1843–1845. doi: 10.1016/j.jada.2008.09.017
  • Aouir, A., Amiali, M., Bitam, A., Benchabane, A., Raghavan, V. G. (2017). Comparison of the biochemical composition of different Arthrospira platensis strains from Algeria, Chad and the USA. Journal of Food Measurement and Characterization, 11, 913−23. doi:10.1007/s11694-016-9463-4
  • Arnhold Pagnussatt, F., Medeiros Del Ponte, E., Garda-Buffon, J., Badiale-Furlong, E. (2014). Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pesticide Biochemistry and Physiology, 108, 21–6. doi: 10.1016/j.pestbp.2013.11.002.
  • Arranz, S., Silván, J. M., Saura‐Calixto, F. (2010). Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Molecular Nutrition & Food Research, 54(11), 1646-1658. doi: 10.1002/mnfr.200900580.
  • Bae M., Kim M. B., Park Y. K., Lee J. Y. (2020). Health benefits of fucoxanthin in the prevention of chronic diseases. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipid, 1865(11), 158618. doi: 10.1016/j.bbalip.2020.158618.
  • Bartual, A., Villazan, B., Brun, F. G. (2011). Monitoring the long-term stability of pelagic morphotypes in the model diatom Phaeodactylum tricornutum. Diatom Research, 26, 243–253.doi: 10.1080/0269249X.2011.619365
  • Bashir, S., Sharif, M.K., Butt, M.S., Shahid, M. (2016). Functional properties and amino acid profile of Spirulina platensis protein isolates. Biological Sciences - PJSIR 59, 12–19.
  • Becker, W. (2004). Microalgae for aquaculture: the nutritional value of microalgae for aquaculture. In: Richmond, A. (eds.): Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford, 380-391. Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25, 207–210. doi: 10.1016/j.biotechadv.2006.11.002
  • Begum, H., Yusoff, F. M., Banerjee, S., Khatoon, H., Shariff, M. (2016). Availability and utilization of pigments from microalgae, Critical Reviews in Food Science and Nutrition, 56(13), 2209-2222. doi: 10.1080/10408398.2013.764841
  • Beheshtipour, H., Mortazavian, A.M., Haratian, P., Darani, K.K. (2012). Effect of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235(4), 719–728. doi: 10.1007/s00217-012-1798-4
  • Bertrand M. (2010). Carotenoid Biosynthesis in Diatoms. Photosynthesis Research, 106, 89–102. doi: 10.1007/s11120-010-9589-x
  • Borowitzka, M. A., Chiappino, M. L., Volcani, B. E. (1977). Ultrastructure of a chain-forming diatom Phaeodactylum tricornutum. Journal of Phycology, 13(2), 162–170. doi: 10.1111/j.1529-8817.1977.tb02906.x
  • Borowitzka, M. A., Volcani, B. E. (1978). The polymorphic diatom Phaeodactylum tricornutum: ultrastructure of its morphotypes, Journal of Phycology, 14(1), 10–21.
  • Bresson J.L., Fairweather-Tait S., Flynn A., Golly I., Korhonen H., Lagiou P., Løvik M., Marchelli R., Martin A., Moseley B. (2010). Scientific opinion on dietary reference values for fats, ıncluding saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal, 8, 1461. doi:10.2903/j.efsa.2010.1461.
  • Britton, G., Liaaen-Jensen, S., Pfander, H. (Eds.). (2004). Carotenoids.
  • Butler, T., Kapoore, R.V., Vaidyanathan, S. (2020). Phaeodactylum tricornutum: A diatom cell factory. Trends in Biotechnology, 38, 606–622. doi: 10.1016/j.tibtech.2019.12.023.
  • Caballero M.A., Jallet D., Shi L., Rithner C., Zhang Y., Peers G. (2016). Quantification of chrysolaminarin from the model diatom Phaeodactylum tricornutum. Algal Research, 20, 180–188. doi:10.1016/j.algal.2016.10.008
  • Chen, Z., Yang, M., Li, C., Wang, Y., Zhang, J., Wang, D., Ge, F. (2014). Phosphoproteomic analysis provides novel ınsights into stress responses in Phaeodactylum tricornutum, a model diatom. Journal of Proteome Research, 13(5), 2511–2523. doi: 10.1021/pr401290u.
  • Chen, Y., Li, F., Li, J., Li, Y., Yang, S., Zhang, X., Liu, G. (2021). Beneficial effects of Spirulina platensis on glycemic control and lipid profiles in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Nutrition Journal, 20(1), 1-13.
  • Chen, X., Yang, Y., Wei, D., Liu, J., Liu, X., Huang, F., Sun, J. (2022). Lipidomic profiling of Phaeodactylum tricornutum under different light intensities and its potential health benefits. Food Chemistry, 372, 131388.
  • Chethana, S., Nayak, C.A., Madhusudhan, M.C., Raghavarao, K. S. M. C. (2015). Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis. Journal of Food Science and Technology, 52, 2415–2421. doi: 10.1007/s13197-014-1287-9.
  • Chuberre C, Chan P, Walet-Balieu ML, Thiébert F, Burel C, Hardouin J, Gügi B, Bardor M. (2022). Comparative proteomic analysis of the Diatom Phaeodactylum tricornutum reveals new ınsights ınto ıntra- and extra-cellular protein contents of ıts oval, fusiform, and triradiate morphotypes. Frontiers in Plant Science, 13, 385. doi: 10.3389/fpls.2022.673113
  • Ciecierska A., Drywień M.E., Hamulka J., Sadkowski T. (2019). Nutraceutical functions of beta-glucans in human nutrition. Roczniki Panstwowego Zakladu Higieny, 70, 315–324. doi: 10.32394/rpzh.2019.0082.
  • Colla, L. M., Reinehr, O. C., Reichert, C., Costa, J. A. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98, 1489–1493. doi:10.1016/j.biortech.2005.09.030
  • Czerwonka, A., Kaławaj, K., Sławińska-Brych, A., Lemieszek, M.K., Bartnik, M., Wojtanowski, K.K., Zdzisińska, B., Rzeski, W. (2018). Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomedicine & Pharmacotherapy, 106, 292-302.
  • De la Jara, A., Ruano-Rodriguez, C., Polifrone, M., Assunçao, P., Brito-Casillas, Y., Wägner, A.M., Majem, L.S. (2018). Impact of dietary Arthrospira (Spirulina) biomass consumption on human health: main health targets and systematic review. Journal of Applied Phycology, 30(4), 2403-2423. doi:10.1007/s10811-018-1468-4
  • De Martino, A., Bartual, A., Willis, A., Meichenin, A., Villazan, B. (2011). Physiological and molecular evidence that environmental changes elicit morphological ınterconversion in the model diatom Phaeodactylum tricornutum, Protist, 162, 462–481. doi: 10.1016/j.protis.2011.02.002.
  • Dean, A. P., Estrada, B., Nicholson, J. M., Sigee, D. C. (2008). Molecular response ofAnabaena flos-aquaeto differing concentrations of phosphorus: A combined Fourier transform infrared and X-ray microanalytical study. Phycological Research, 56(3), 193–201. doi: 10.1111/j.1440-1835.2008.00501.x
  • Del Mondo, A., Smerilli, A., Sané, E., Sansone, C., Brunet, C. (2020). Challenging microalgal vitamins for human health. Microbial Cell Factories, 19(1). doi: 10.1186/s12934-020-01459-1
  • Dembitsky, V.M., Maoka, T. (2007). Allenic and cumulenic lipids. Progress in Lipid Research, 46, 328–375. doi: 10.1016/j.plipres.2007.07.001
  • El-Sheekh, M., Abomohra, A.E.F. (2020). The therapeutic potential of Spirulina to combat COVID-19 infection. Egyptian Journal of Botany, 60(3), 605-609. doi: 10.21608/EJBO.2020.49345.1581
  • F. A. O. (2008). A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. ed. M. A. B Habib, M. Parvin, T. C. Huntington and M. R. Hasan, FAO Fisheries and Aquaculture Circular. no. 1034. Rome, FAO, 33.
  • F. A. O. (2010). Algae-based biofuels: applications and co-products. Ed. Sjors van Iersel & Alessandro Flammini. FAO Environmental and Natural Resources Service Series, No. 44, Rome 2010.
  • Fajardo, A.R., Cerdan, L.E., Medina, A.R., Fernández, F.G.A., Moreno, P.A.G., Grima E.M. (2007). Lipid extraction from the microalga Phaeodactylum tricornutum. European Journal of Lipid Science and Technology, 109, 120-6. doi:10.1002/EJLT.200600216
  • Fazilati, M., Mohammadi, N., Sedighi, M., Asemi, Z. (2021). The effect of Spirulina supplementation on metabolic status, liver enzymes, inflammation, and antioxidant capacity in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition ESPEN, 44, 46-52.
  • Ferreres, F., Lopes, G., Gil-Izquierdo, A., Andrade, P. B., Sousa, C., Mouga, T., Valentão, P. (2012). Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties. Marine Drugs, 10, 2766-2781. doi: 10.3390/md10122766.
  • Foo, S. C., Yusoff, F. M., Ismail, M., Basri, M., Yau, S. K., Khong, N. M. H., Ebrahimi, M. (2017). Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. Journal of Biotechnology, 241, 175–183. doi: 10.1016/j.jbiotec.2016.11.026.
  • Ford, C.W., Percival, E. (1965). (1) Carbohydrates of Phaeodactylum tricornutum. Part I. A sulphated glucuronomannan. Journal of the Chemical Society Home, 7035–7041.
  • Ford, C.W., Percival, E. (1965). (2) Carbohydrates of Phaeodactylum tricornutum. Part II. A sulphated glucuronomannan. Journal of the Chemical Society Home, 7042–7046.
  • Fox, D. (1996). Spirulina: Production and Potential. Pub. By Editions Edisud, La Calade, R.N.7, 13090 Aix-en-Province, FRANCE, 232.
  • Gao B., Chen A., Zhang W., Li A., Zhang C. (2017). Co-Production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. Journal of Ocean University of China, 16, 916–924. doi:10.1007/s11802-017-3174-2
  • García J.L., de Vicente M., Galán B. (2017). Microalgae, old sustainable food and fashion 500 nutraceuticals. Microbial Biotechnology, 10, 1017–1024. doi: 10.1111/1751-7915.12800.
  • García-Villalobos, H., Santos-López, J. A., López-Martínez, L. X. (2020). Spirulina platensis extracts inhibit the production of pro-inflammatory cytokines and oxidative stress induced by lipopolysaccharide in RAW 264.7 macrophages. Journal of Functional Foods, 66, 103797.
  • Gargouri, M., Ben Ahmed, M., Ali, M. B., & Akrout, F. M. (2020). Spirulina platensis ameliorates oxidative stress, inflammation and lipid profile in rats fed with high-fat and high-fructose diet. Journal of Food Biochemistry, 44(8), e13328.
  • Gelzinis, A., Butkus, V., Songaila, E., Augulis, R., Gall, A., Büchel, C., Robert, B., Abramavicius, D., Zigmantas, D., Valkunas, L. (2015). Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex. Biochimica et Biophysica Acta, 1847, 241–247. doi: 10.1016/j.bbabio.2014.11.004
  • German-Báez, L., Valdez-Flores, M., Félix-Medina, J., Norzagaray-Valenzuela, C., Santos-Ballardo, D., Reyes-Moreno, C. Valdez-Ortiz, A. (2017). Chemical composition and physicochemical properties of Phaeodactylum tricornutum microalgal residual biomass. Food Science and Technology International, 23(8), 681–689. doi:10.1177/1082013217717611
  • Goiris, K., Muylaert, K., Voorspoels, S., Noten, B., De Paepe, D., E Baart, G. J., De Cooman, L. (2014). Detection of flavonoids in microalgae from different evolutionary lineages. Journal of Phycology, 50(3), 483–492. doi: 10.1111/jpy.12180.
  • Guil-Guerrero JL, Navarro-Jua´rez R, Lo´pez-Martı´nez JC, Campra-Madrid P and Rebolloso-Fuentes MM. (2004). Functional properties of the biomass of three microalgal species. Journal of Food Engineering, 65, 511–551. doi:10.1016/j.jfoodeng.2004.02.014
  • Han, J., Shi, Y., Liu, J., Guo, Y. (2020). A comparison of the nutrient compositions and antioxidant activities of three microalgae: Phaeodactylum tricornutum, Nannochloropsis oceanica, and Isochrysis galbana. Journal of Applied Phycology, 32(3), 1697-1707.
  • Haoujar, I., Cacciola, F., Abrini, J., Mangraviti, D., Giuffrida, D., Oulad El Majdoub, Y., Skali Senhaji, N. (2019). The contribution of carotenoids, phenolic compounds, and flavonoids to the antioxidative properties of marine microalgae ısolated from Mediterranean Morocco. Molecules, 24(22), 4037. doi: 10.3390/molecules24224037.
  • He, L., Han, X., and Yu, Z. (2014). A rare Phaeodactylum tricornutum cruciform morphotype: Culture conditions, transformation and unique fatty acid characteristics. PLoS One, 9(4). doi:10.1371/journal.pone.0093922
  • Heffernan, N., Brunton, N. P., FitzGerald, R. J., Smyth, T. J. (2015). Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Marine Drugs, 13, 509-528. doi: 10.3390/md13010509
  • Henrikson, R. (2000). Earth food Spirulina: essential fatty acids and phytonutrients. Ronore enterprises. Inc., Laguna Beach.
  • Hernández-Ledesma, B., Herrero, M. (2013). Bioactive compounds from marine foods: plant and animal sources. John Wiley & Sons: Madrid, Spain, ISBN 1-118-41287-7.
  • Ismaiel, M. M. S., Piercey‐Normore, M. D. (2020). Gene transcription and antioxidants production in Arthrospira (Spirulina) platensis grown under temperature variation. Journal of Applied Microbiology. doi: 10.1111/jam.14821.
  • Iwamoto, H. (2004). Industrial production of microalgal cell-mass and secondary products-major industrial species- Chlorella. In Richmond, A. (ed.), Handbook of microalgal culture. Blackwell, Oxford, 255–263.
  • Jayachandran M., Chen J., Chung S.S.M., Xu B. (2018). A critical review on the Impacts of β-Glucans on gut microbiota and human health. The Journal of Nutritional Biochemistry, 61, 101–110. doi: 10.1016/j.jnutbio.2018.06.010.
  • Kadenbach, B., Ramzan, R., Vogt, S. (2009). Degenerative diseases, oxidative stress and cytochrome c oxidase function. Trends in Molecular Medicine, 15, 139–147. doi: 10.1016/j.molmed.2009.02.004.
  • Kato, T., Arakawa, M., Saito, M., & Ishihara, K. (2020). Effect of oral intake of Spirulina platensis on atopic dermatitis and other allergic diseases in humans: a retrospective study. Journal of Medicinal Food, 23(2), 128-135.
  • Kim J.H., Kim S.M., Cha K.H., Mok I.-K., Koo S.Y., Pan C.-H., Lee J.K. (2016). Evaluation of the anti-obesity effect of the microalga Phaeodactylum tricornutum. Applied Biological Chemistry, 59, 283–290. doi:10.1007/s13765-016-0151-1
  • Klejdus, B., Kopecký, J., Benešová, L., Vacek, J. (2009). Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. Journal of Chromatography A, 1216(5), 763–771. doi: 10.1016/j.chroma.2008.11.096.
  • Kuczynska, P., Jemiola-Rzeminska, M., Strzalka, K. (2015). Photosynthetic pigments in diatoms. Marine Drugs, 13(9), 5847–5881. doi: 10.3390/md13095847
  • Kuddus, M., Singh, P., Thomas, G., Ali, A. (2015). Production of C-phycocyanin and its potential applications. Biotechnology of Bioactive Compounds, 283–299. doi:10.1002/9781118733103.CH12
  • Laurienzo, P. (2010). Marine polysaccharides in pharmaceutical applications: An overview. Marine Drugs 8, 2435–2465. doi: 10.3390/md8092435
  • Le Costaouec, T., Unamunzaga, C., Mantecon, L., and Helbert, W. (2017). New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Research-Biomass Biofuels Bioproducts, 26, 172–179. doi:10.1016/j.algal.2017.07.021
  • Li, Y., Qin, J. G., Moore R. B., Ball, A. S. (2009). Perspectives of marine phytoplankton as a source of nutrition and bioenergy, in Marine phytoplankton, Nova Science Pub Inc., 187–202.
  • Martin-Girela, I., Albero, B., Tiwari, B.K., Miguel, E., Aznar, R. (2020). Screening of Contaminants of Emerging Concern in Microalgae Food Supplements. Separations, 7(2), 28.doi: 10.3390/separations7020028
  • Mathur, M. (2018). Bioactive molecules of Spirulina: a food supplement. Bioactive Molecules in Food, 1-22. doi:10.1007/978-3-319-54528-8_97-1
  • Mazo, V. K., Gmoshinskiĭ, I. V., Zilova, I. S. (2004). Microalgae Spirulina in human nutrition, Voprosy Pitaniia, 73(1) 45-53.
  • Mikami, K., Hosokawa, M. (2013). Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 14, 13763–13781. doi: 10.3390/ijms140713763
  • Moradi, S., Ziaei, R., Foshati, S., Mohammadi, H., Nachvak, S.M., Rouhani, M.H. (2019). Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complementary Therapies in Medicine, 47, 102211. doi: 10.1016/j.ctim.2019.102211.
  • Moraes, P. C., Noce, C. W., Thomaz, L. A., Cintra M. L., & Correa, M. E. (2011). Pigmented lichenoid drug eruption secondary to chloroquine therapy: an unusual presentation in lower lip. Minerva Stomatologica, 60, 32–327.
  • Muller-Feuga, A. (1996). Microalgues marines. Les enjeux de la recherche. Institut Français de Recherche pour l’Exploitation de la Mer, Plouzané.
  • Nayak, B., Liu, R. H., Tang, J. (2015). Effect of processing on phenolic antioxidants of fruits, vegetables, and grains-a review. Critical Reviews in Food Science and Nutrition, 55(7), 887-918. doi: 10.1080/10408398.2011.654142.
  • Neumann, U., Derwenskus, F., Flaiz Flister, V., Schmid-Staiger, U., Hirth, T., Bischoff, S. (2019). Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants, 8(6), 183. doi: 10.3390/antiox8060183
  • Ogbonda, K. H., Aminigo, R. E., Abu, G. O. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource Technology, 98, 2207−11. doi: 10.1016/j.biortech.2006.08.028.
  • Park, W. S., Kim, H. J., Li, M., Lim, D. H., Kim, J., Kwak, S. S., Kang, C. M., Ferruzzi, M. G., Ahn, M. J. (2018). Two Classes of pigments, carotenoids and C-Phycocyanin, in Spirulina powder and their antioxidant activities. Molecules (Basel, Switzerland), 23(8), 2065. doi: 10.3390/molecules23082065.
  • Peng J., Yuan J.P., Wu C.F., Wang J.H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs, 9, 1806–1828. doi: 10.3390/md9101806
  • Pereira, L., Magalhaes, J. (2014). Neto, Marine Algae, Biodiversity, Taxonomy, Environmental Assessment, and Biotechnology, CRC Press.
  • Piñero Estrada, J., Bermejo Besco´s, P., Villar del Fresno, A. M. (2001). Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco, 56(5-7), 497–500. doi: 10.1016/s0014-827x(01)01084-9.
  • Pugh, N., Ross, S. A., Elsohly, H. N., Elsohly, M. A., Pasco, D. S. (2001). Isolation of three weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aguae and Chlorella pyrenoidosa. Planta Medica, 67, 737-742. doi: 10.1055/s-2001-18358.
  • Pyne, P. K., Bhattacharjee, P., Srivastav, P. P. (2017). Microalgae (Spirulina platensis) and its bioactive molecules: review. Indian Journal of Nutrition, 4(2), 160.
  • Reboleira, J., Freitas, R., Pinteus, S., Silva, J., Alves, C., Pedrosa, R., Bernardino, S. (2019). Spirulina in nonvitamin and nonmineral nutritional supplements. Academic Press, 409-413.
  • Rebolloso-Fuentes, M.M., Navarro-Pérez, A., Ramos-Miras, J.J., Guil-Guerrero, J.L. (2001). Biomass nutrient profiles of the microalga Phaeodactylum tricornutum. Journal of Food Biochemistry, 25, 57–76. doi: 10.1021/jf0010376.
  • Richmond, A. (1986). Outdoor mass cultures of microalgae. (A. Richmond Editör). Handbook of Microalgal Mass Cultures of Microalgae. CRC Press, INC. Boca Raton, Florida. 285-329.
  • Richmond, A. (2004). Handbook of microalgal culture, Biotechnology and Applied Phycology, 444. doi:10.1002/9781118567166
  • Rico, M., López, A., Santana-Casiano, J. M., Gonzàlez, A. G., Gonzàlez-Dàvila, M. (2012). Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnology and Oceanography, 58(1), 144–152. doi:10.4319/lo.2013.58.1.0144
  • Rodriguez De Marco, E., Steffolani, M. E., Martinez, C. S., Leon, A. E. (2014). Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT - Food Science and Technology, 58, 102−108. doi:10.1016/j.lwt.2014.02.054
  • Rodríguez-Hernández, A., Ble-Castillo, J. L., Juárez-Oropeza, M. A., Díaz-Zagoya, J. C. (2022). Effect of Spirulina platensis on lipid profile, glucose metabolism, and antioxidant capacity in overweight and obese subjects: a systematic review and meta-analysis. Journal of Medicinal Food, 25(1), 3-13.
  • Saranraj, P., Sivasakthi, S. (2014). Spirulina platensis – food for future: a review. Asian Journal of Pharmaceutical Science & Technology, 4(1), 26-33.
  • Saura-Calixto, F. (2012). Concept and healthrelated properties of nonextractable polyphenols: the missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60(45), 11195-11200. doi:10.1021/jf303758j
  • Scaglioni, P. T., Quadros, L., de Paula, M., Furlong, V. B., Abreu, P. C., Badiale-Furlong, E. (2018). Inhibition of enzymatic and oxidative processes by phenolic extracts from Spirulina sp. and Nannochloropsis sp. Food Technology and Biotechnology, 56(3), 344-353. doi: 10.17113/ftb.56.03.18.5495.
  • Shahidi, F., Yeo, J. (2016). Insoluble-bound phenolics in food. Molecules, 21(9), 1216. doi: 10.3390/molecules21091216.
  • Shibata, N., Kobayashi, M. (2008). The role for oxidative stress in neurodegenerative diseases. Brain Nerve, 60, 157–170.
  • Souza, M. M., Prieto, L., Ribeiro, A. C., Souza, T. D., Badiale-Furlong E. (2011). Assesment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Ciencia E Agrotecnologia, 35(6), 1050–8. doi:10.1590/S1413-70542011000600003
  • Sun, L., Zou, T., Chen, W., Chen, H. (2020). Extraction optimization, characterization, and antioxidant activity of polysaccharides from Phaeodactylum tricornutum. International Journal of Biological Macromolecules, 145, 670-677.
  • Sun, P., Zhu, L. (2021). Evaluation of the antibacterial activity and mechanisms of Phaeodactylum tricornutum extracts. Marine Drugs, 19(9), 489.
  • Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., Kuča, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology, 90(8), 1817–1840. doi: 10.1007/s00204-016-1744-5.
  • Xia S., Wang K., Wan L., Li A., Hu Q., Zhang C. (2013). Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine Drugs, 11, 2667-2881. doi: 10.3390/md11072667.
  • Yousefi, R., Saidpour, A., Mottaghi, A. (2019). The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation and related inflammatory markers: A systematic review. Complementary therapies in medicine, 42, 137- 144. doi: 10.1016/j.ctim.2018.11.013.
  • Zhang, H., Tang, Y., Zhang, Y., Zhang, S., Qu, J., Wang, X., Liu, Z. (2015). Fucoxanthin: A Promising medicinal and nutritional ingredient. Evidence-Based Complementary and Alternative Medicine, 1–10. doi: 10.1155/2015/723515
  • Zhang, Y., Ma, X., Zhao, X., Hao, Y. (2020). Extraction optimization, structural characterization and in vitro antioxidant activity of polysaccharides from Phaeodactylum tricornutum. International Journal of Biological Macromolecules, 154, 427-435.
  • Zhao, B., Cui, Y., Fan, X., Qi, P., Liu, C., Zhou, X., Zhang, X. (2019). Antiobesity effects of Spirulina platensis protein hydrolysate by modulating brainliver axis in high-fat diet fed mice. PLoS One, 14(6), e0218543. doi:10.1371/journal.pone.0218543
  • Zhou, P., Yang, X-L., Wang, X.G., Hu, B., Zhang L., Zhang, W., Si, H., Zhu, Y., Li B., Huang, C., Chen, H., Luo, Y., Gou, H., Jiang, R., Liu, M., Chen, Y., Shen, X., Wang, X., Zheng, X., Zhao, K., Chen, Q., Deng, F., Liu, L., Yan, B., Zhan, F., Wang, Y., Xiao, G., Shi, Z. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270-273. doi: 10.1038/s41586-020-2012-7.
  • Zhu F., Du B., Xu B. (2016). A Critical review on production and ındustrial applications of Beta-Glucans. Food Hydrocolloids, 52, 275–288. doi:10.1016/j.foodhyd.2015.07.003
There are 106 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Reviews
Authors

Türkan Uzlaşır 0000-0002-8535-2835

Serkan Selli 0000-0003-0450-2668

Hasim Kelebek 0000-0002-8419-3019

Project Number 120O858
Publication Date September 29, 2023
Submission Date March 28, 2023
Published in Issue Year 2023 Volume: 1 Issue: 1

Cite

APA Uzlaşır, T., Selli, S., & Kelebek, H. (2023). Spirulina platensis ve Phaeodactylum tricornutum’un Biyoaktif Bileşikleri, Sağlık Üzerine Etkileri ve Gıda Endüstrisinde Kullanım Alanları. ITU Journal of Food Science and Technology, 1(1), 15-26.