Review
BibTex RIS Cite

Polyphenols and their effects on sportive performance

Year 2023, Volume: 2 Issue: 2, 225 - 243, 03.01.2024

Abstract

The use of polyphenol (PP) supplements has been reported to increase whole body antioxidant capacity and modulate endothelial function. Various epidemiological studies and clinical trials have proven that the risk of developing some chronic diseases (coronary heart disease, stroke, type II diabetes and some types of cancer) decreases with the increase in the intake of PPs due to their many biological activities. At the same time, it is seen that the consumption of supplements rich in antioxidant compounds by athletes has been increasing to a great extent in recent years due to their beneficial effects on sportive performance. The results of the studies in the literature are still insufficient to suggest that the use of PP supplements will be in favor or against the recreational, competitive or elite athletes. In this sense, more research and evidence is needed. It is important to screen for oxidative stress status in these athletes first, as athletes with higher oxidative stress levels will clearly need antioxidant supplements more. Since polyphenols have many biological effects; In future exercise studies, instead of focusing only on sportive performance, it will be more appropriate to work in a suitable and specific way to determine the physiological interactions between exercise and the selected PP supplement.

References

  • D’Angelo, S. (2019). Polyphenols and athletic performance: a review on human data. Plant physiological aspects of phenolic compounds, 1-24. https:// doi:10.5772/intechopen.85031
  • Stear, S. J., Burke, L. M., & Castell, L. M. (2009). BJSM reviews: A–Z of nutritional supplements: dietary supplements, sports nutrition foods and Ergogenic aids for health and performance Part 3. British Journal of Sports Medicine, 43(12), 890-892. http://dx.doi.org/10.1136/bjsm.2009.065417
  • Mankowski, R. T., Anton, S. D., Buford, T. W., & Leeuwenburgh, C. (2015). Dietary antioxidants as modifiers of physiologic adaptations to exercise. Medicine and science in sports and exercise, 47(9), 1857.
  • Overdevest, E., Wouters, J. A., Wolfs, K. H., van Leeuwen, J. J., & Possemiers, S. (2018). Citrus flavonoid supplementation improves exercise performance in trained athletes. Journal of sports science & medicine, 17(1), 24. ence and Medicine (2018) 17, 24-30 http://www.jssm.org PMC5844206
  • Malaguti, M., Angeloni, C., & Hrelia, S. (2013). Polyphenols in exercise performance and prevention of exercise-induced muscle damage. Oxidative medicine and cellular longevity, 2013. https://doi.org/10.1155/2013/825928
  • Wagner, K. H. (2015). Antioxidants in Sport Nutrition: All the Same Effectiveness?. https://www.ncbi.nlm.nih.gov/books/NBK299053/
  • Sellami, M., Slimeni, O., Pokrywka, A., Kuvačić, G., D Hayes, L., Milic, M., & Padulo, J. (2018). Herbal medicine for sports: a review. Journal of the International Society of Sports Nutrition, 15(1), 14. https://doi.org/10.1186/s12970-018-0218-y
  • Keli, S. O., Hertog, M. G., Feskens, E. J., & Kromhout, D. (1996). Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Archives of internal medicine, 156(6), 637-642. doi:10.1001/archinte.1996.00440060059007
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727-747. https://doi.org/10.1093/ajcn/79.5.727
  • Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American journal of clinical nutrition, 81(1), 230S-242S. https://doi.org/10.1093/ajcn/81.1.230S
  • Myburgh, K. H. (2014). Polyphenol supplementation: benefits for exercise performance or oxidative stress?. Sports Medicine, 44, 57-70. DOI 10.1007/s40279-014-0151-4
  • Jówko, E. (2015). Green tea catechins and sport performance. SPORT NUTRITION, 123. https://www.ncbi.nlm.nih.gov/books/NBK299060/
  • Machado, Á. S., Da Silva, W., Souza, M. A., & Carpes, F. P. (2018). Green tea extract preserves neuromuscular activation and muscle damage markers in athletes under cumulative fatigue. Frontiers in physiology, 9, 1137. https://doi.org/10.3389/fphys.2018.01137
  • Belviranli, M., & Okudan, N. (2015). Well-known antioxidants and newcomers in sport nutrition: coenzyme Q10, quercetin, resveratrol, pterostilbene, pycnogenol and astaxanthin. https://www.ncbi.nlm.nih.gov/books/NBK299046/
  • Novelle, M. G., Wahl, D., Diéguez, C., Bernier, M., & De Cabo, R. (2015). Resveratrol supplementation: where are we now and where should we go?. Ageing research reviews, 21, 1-15. https://doi.org/10.1016/j.arr.2015.01.002
  • Martins, N. C., Dorneles, G. P., Blembeel, A. S., Marinho, J. P., Proença, I. C. T., da Cunha Goulart, M. J. V., ... & Ribeiro, J. L. (2020). Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: A randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, 54, 102570. https://doi.org/10.1016/j.ctim.2020.102570
  • Pilolla, K. D., Armendariz, J., Burrus, B. M., Baston, D. S., McCarthy, K. A., & Bloedon, T. K. (2023). Effects of Wild Blueberries on Fat Oxidation Rates in Aerobically Trained Males. Nutrients, 15(6), 1339. https://doi.org/10.3390/nu15061339
  • Cavarretta, E., Peruzzi, M., Del Vescovo, R., Di Pilla, F., Gobbi, G., Serdoz, A., ... & Carnevale, R. (2018). Dark chocolate intake positively modulates redox status and markers of muscular damage in elite football athletes: A randomized controlled study. Oxidative medicine and cellular longevity, 2018. https://doi.org/10.1155/2018/4061901
  • Ammar, A., Turki, M., Hammouda, O., Chtourou, H., Trabelsi, K., Bouaziz, M., ... & Yaich, S. (2017). Effects of pomegranate juice supplementation on oxidative stress biomarkers following weightlifting exercise. Nutrients, 9(8), 819. https://doi.org/10.3390/nu9080819
  • Potter, J. A., Hodgson, C. I., Broadhurst, M., Howell, L., Gilbert, J., Willems, M. E., & Perkins, I. C. (2020). Effects of New Zealand blackcurrant extract on sport climbing performance. European journal of applied physiology, 120, 67-75. https://doi.org/10.1007/s00421-019-04226-2
  • Tanabe, Y., Chino, K., Sagayama, H., Lee, H. J., Ozawa, H., Maeda, S., & TAkAHASHI, H. (2019). Effective timing of curcumin ingestion to attenuate eccentric exercise-induced muscle soreness in men. Journal of nutritional science and vitaminology, 65(1), 82-89. https://doi.org/10.3177/jnsv.65.82
  • Maleki, B. H., Tartibian, B., Mooren, F. C., Krüger, K., FitzGerald, L. Z., & Chehrazi, M. (2016). A randomized controlled trial examining the effects of 16 weeks of moderate-to intensive cycling and honey supplementation on lymphocyte oxidative DNA damage and cytokine changes in male road cyclists. Cytokine, 88, 222-231. https://doi.org/10.1016/j.cyto.2016.09.016
  • Gaamouri, N., Zouhal, H., Hammami, M., Hackney, A. C., Abderrahman, A. B., Saeidi, A., ... & Ounis, O. B. (2019). Effects of polyphenol (carob) supplementation on body composition and aerobic capacity in taekwondo athletes. Physiology & behavior, 205, 22-28. https://doi.org/10.1016/j.physbeh.2019.03.003
  • Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford university press, USA. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
  • Bast A, Haenen GRMM. (2015) Chapter 2: Nutritional antioxidants it is time to categorise. In: Lamprecht M, editor. Antioxidants in Sport Nutrition. Boca Raton, FL: CRC Press/Taylor & Francis. https://www.ncbi.nlm.nih.gov/books/NBK299048/
  • Reid, M. B., Haack, K. E., Franchek, K. M., Valberg, P. A., Kobzik, L. E. S. T. E. R., & West, M. S. (1992). Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. Journal of applied physiology, 73(5), 1797-1804. https://doi.org/10.1152/jappl.1992.73.5.1797
  • Gomez-Cabrera, M. C., Domenech, E., Romagnoli, M., Arduini, A., Borras, C., Pallardo, F. V., ... & Vina, J. (2008). Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. The American journal of clinical nutrition, 87(1), 142-149. https://doi.org/10.1093/ajcn/87.1.142
  • Kerksick, C. M., & Zuhl, M. (2015). Mechanisms of oxidative damage and their impact on contracting muscle. Antioxidants in sport nutrition, Chapter-1. https://www.taylorfrancis.com/chapters/oa-edit/10.1201/b17442-1/mechanisms-oxidative-damage-impact-contracting-muscle-chad-kerksick-micah-zuhl (DOI:10.1201/b17442-1)
  • Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox biology, 4, 180-183. https://doi.org/10.1016/j.redox.2015.01.002
  • Kawamura, T., & Muraoka, I. (2018). Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants, 7(9), 119. https://doi.org/10.3390/antiox7090119
  • Webb, R., Hughes, M. G., Thomas, A. W., & Morris, K. (2017). The ability of exercise-associated oxidative stress to trigger redox-sensitive signalling responses. Antioxidants, 6(3), 63. https://doi.org/10.3390/antiox6030063
  • Tarhan, N. Keten tohumu ve diyabetik kardiyovasküler komplikasyonlar (Master's thesis, Sağlık Bilimleri Enstitüsü).
  • Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P., ... & Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322.
  • Williamson, G. (2017). The role of polyphenols in modern nutrition. Nutrition bulletin, 42(3), 226-235. https://doi.org/10.1111/nbu.12278
  • González-Castejón, M., & Rodriguez-Casado, A. (2011). Dietary phytochemicals and their potential effects on obesity: a review. Pharmacological research, 64(5), 438-455. https://doi.org/10.1016/j.phrs.2011.07.004
  • Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21(7), 901. https://doi.org/10.3390/molecules21070901
  • Hussain, M. B., Hassan, S., Waheed, M., Javed, A., Farooq, M. A., & Tahir, A. (2019). Bioavailability and metabolic pathway of phenolic compounds. In Plant physiological aspects of phenolic compounds. IntechOpen. DOI: 10.5772/intechopen.84745
  • Santos, R. M. M., & Lima, D. R. A. (2016). Coffee consumption, obesity and type 2 diabetes: a mini-review. European journal of nutrition, 55, 1345-1358. https:// doi: 10.1007/s00394-016-1206-0.
  • MacRae, H. S., & Mefferd, K. M. (2006). Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. International journal of sport nutrition and exercise metabolism, 16(4), 405-419. https://doi.org/10.1123/ijsnem.16.4.405
  • Darvishi, L., Ghiasvand, R., Hariri, M., Askari, G., Rezai, P., Aghaie, M., ... & Mashhadi, N. S. (2013). Quercetin supplementation does not attenuate exercise performance and body composition in young female swimmers. International Journal of Preventive Medicine, 4(Suppl 1), S43. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665024/
  • O’Fallon, K. S., Kaushik, D., Michniak-Kohn, B., Dunne, C. P., Zambraski, E. J., & Clarkson, P. M. (2012). Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. International journal of sport nutrition and exercise metabolism, 22(6), 430-437. https://doi.org/10.1123/ijsnem.22.6.430
  • Daneshvar, P., Hariri, M., Ghiasvand, R., Askari, G., Darvishi, L., Mashhadi, N. S., & Khosravi-Boroujeni, H. (2013). Effect of eight weeks of quercetin supplementation on exercise performance, muscle damage and body muscle in male badminton players. International journal of preventive medicine, 4(Suppl 1), S53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665027/
  • Askari, G., Ghiasvand, R., Karimian, J., Feizi, A., Paknahad, Z., Sharifirad, G., & Hajishafiei, M. (2012). Does quercetin and vitamin C improve exercise performance, muscle damage, and body composition in male athletes?. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 17(4), 328. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526124/
  • Somerville, V., Bringans, C., & Braakhuis, A. (2017). Polyphenols and performance: a systematic review and meta-analysis. Sports Medicine, 47, 1589-1599. https://doi.org/10.1007/s40279-017-0675-5
  • Sgrò, P., Ceci, R., Lista, M., Patrizio, F., Sabatini, S., Felici, F., ... & Di Luigi, L. (2021). Quercetin modulates IGF-I and IGF-II levels after eccentric exercise-induced muscle-damage: a placebo-controlled study. Frontiers in Endocrinology, 1412. https://doi.org/10.3389/fendo.2021.745959
  • Martin-Rincon, M., Gelabert-Rebato, M., Galvan-Alvarez, V., Gallego-Selles, A., Martinez-Canton, M., Lopez-Rios, L., ... & Calbet, J. A. (2020). Supplementation with a mango leaf extract (Zynamite®) in combination with quercetin attenuates muscle damage and pain and accelerates recovery after strenuous damaging exercise. Nutrients, 12(3), 614. https://doi.org/10.3390/nu12030614
  • Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition reviews, 56(11), 317-333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
  • Tzima, K., Brunton, N. P., & Rai, D. K. (2018). Qualitative and quantitative analysis of polyphenols in Lamiaceae plants—A review. Plants, 7(2), 25. https://doi.org/10.3390/plants7020025
  • Mattera, R., Benvenuto, M., Giganti, M. G., Tresoldi, I., Pluchinotta, F. R., Bergante, S., ... & Bei, R. (2017). Effects of polyphenols on oxidative stress-mediated injury in cardiomyocytes. Nutrients, 9(5), 523. https://doi.org/10.3390/nu9050523
  • Jówko, E., Długołęcka, B., Makaruk, B., & Cieśliński, I. (2015). The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. European journal of nutrition, 54, 783-791.
  • Panza, V. S. P., Wazlawik, E., Schütz, G. R., Comin, L., Hecht, K. C., & da Silva, E. L. (2008). Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition, 24(5), 433-442. https://doi.org/10.1016/j.nut.2008.01.009
  • Sobhani, V., Mehrtash, M., Shirvani, H., & Fasihi-Ramandi, M. (2020). Effects of short-term green tea extract supplementation on VO2 max and inflammatory and antioxidant responses of healthy young men in a hot environment. International Journal of Preventive Medicine, 11. https://doi.org/ 10.4103/ijpvm.IJPVM_64_19
  • Sadowska-Krępa, E., Domaszewski, P., Pokora, I., Żebrowska, A., Gdańska, A., & Podgórski, T. (2019). Effects of medium-term green tea extract supplementation combined with CrossFit workout on blood antioxidant status and serum brain-derived neurotrophic factor in young men: A pilot study. Journal of the International Society of Sports Nutrition, 16(1), 13. https://doi.org/10.1186/s12970-019-0280-0
  • Dolinsky, V. W., Jones, K. E., Sidhu, R. S., Haykowsky, M., Czubryt, M. P., Gordon, T., & Dyck, J. R. (2012). Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. The Journal of physiology, 590(11), 2783-2799. https://doi.org/10.1113/jphysiol.2012.230490
  • Hart, N., Sarga, L., Csende, Z., Koltai, E., Koch, L. G., Britton, S. L., ... & Radak, Z. (2013). Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food and chemical toxicology, 61, 53-59. https://doi.org/10.1016/j.fct.2013.01.051
  • Price, N. L., Gomes, A. P., Ling, A. J., Duarte, F. V., Martin-Montalvo, A., North, B. J., ... & Sinclair, D. A. (2012). SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell metabolism, 15(5), 675-690. https://doi.org/10.1016/j.cmet.2012.04.003
  • McAnulty, L. S., Miller, L. E., Hosick, P. A., Utter, A. C., Quindry, J. C., & McAnulty, S. R. (2013). Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise. Applied Physiology, Nutrition, and Metabolism, 38(7), 760-765. https://doi.org/10.1139/apnm-2012-0455
  • Dolinsky, V. W., & Dyck, J. R. (2014). Experimental studies of the molecular pathways regulated by exercise and resveratrol in heart, skeletal muscle and the vasculature. Molecules, 19(9), 14919-14947. https://doi.org/10.3390/molecules190914919
  • Martins, N. C., Dorneles, G. P., Blembeel, A. S., Marinho, J. P., Proença, I. C. T., da Cunha Goulart, M. J. V., ... & Ribeiro, J. L. (2020). Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: A randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, 102570. https://doi.org/10.1016/j.ctim.2020.102570
  • De Lima Tavares Toscano, L., Silva, A. S., de França, A. C. L., de Sousa, B. R. V., de Almeida Filho, E. J. B., da Silveira Costa, M., ... & da Conceição Rodrigues Gonçalves, M. (2020). A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. European Journal of Nutrition, 59, 2997-3007. https://doi.org/10.1007/s00394-020-02453-4
  • Tsao, J. P., Liu, C. C., Wang, H. F., Bernard, J. R., Huang, C. C., & Cheng, I. S. (2021). Oral Resveratrol supplementation attenuates exercise-induced Interleukin-6 but not Oxidative Stress after a high intensity cycling challenge in adults. International Journal of Medical Sciences, 18(10), 2137. https://www.medsci.org/v18p2137.htm
  • Baltaci, S. B., Mogulkoc, R., & Baltaci, A. K. (2016). Resveratrol and exercise. Biomedical reports, 5(5), 525-530. https://doi.org/10.3892/br.2016.777
  • De Sousa, B. R. V., de Lima Tavares Toscano, L., de Almeida Filho, E. J. B., Sena, K. F., Costa, M. S., de Souza Cunha, R. C., ... & Silva, A. S. (2022). Purple grape juice improves performance of recreational runners, but the effect is genotype dependent: a double blind, randomized, controlled trial. Genes & Nutrition, 17(1), 1-14. https://doi.org/10.1186/s12263-022-00710-1
  • Hurst, R. D., Wells, R. W., Hurst, S. M., McGhie, T. K., Cooney, J. M., & Jensen, D. J. (2010). Blueberry fruit polyphenolics suppress oxidative stress‐induced skeletal muscle cell damage in vitro. Molecular nutrition & food research, 54(3), 353-363. https://doi.org/10.1002/mnfr.200900094
  • Lynn, A., Garner, S., Nelson, N., Simper, T. N., Hall, A. C., & Ranchordas, M. K. (2018). Effect of bilberry juice on indices of muscle damage and inflammation in runners completing a half-marathon: A randomised, placebo-controlled trial. Journal of the International Society of Sports Nutrition, 15(1), 22. https://doi.org/10.1186/s12970-018-0227-x
  • Castro-Acosta, M. L., Smith, L., Miller, R. J., McCarthy, D. I., Farrimond, J. A., & Hall, W. L. (2016). Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin .concentrations. The Journal of Nutritional Biochemistry, 38, 154-161. https://doi.org/10.1016/j.jnutbio.2016.09.002
  • Godwin, C., Cook, M. D., & Willems, M. E. (2017). Effect of New Zealand blackcurrant extract on performance during the running based anaerobic sprint test in trained youth and recreationally active male football players. Sports, 5(3), 69. https://doi.org/10.3390/sports5030069
  • Strauss, J. A., Willems, M. E., & Shepherd, S. O. (2018). New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females. European journal of applied physiology, 118, 1265-1272. https://doi.org/10.1007/s00421-018-3858-3
  • Bell, P. G., McHugh, M. P., Stevenson, E., & Howatson, G. (2014). The role of cherries in exercise and health. Scandinavian journal of medicine & science in sports, 24(3), 477-490. https://doi.org/10.1111/sms.12085
  • Bell, P. G., Walshe, I. H., Davison, G. W., Stevenson, E., & Howatson, G. (2014). Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients, 6(2), 829-843. https://doi.org/10.3390/nu6020829
  • McCormick, R., Peeling, P., Binnie, M., Dawson, B., & Sim, M. (2016). Effect of tart cherry juice on recovery and next day performance in well-trained Water Polo players. Journal of the International Society of Sports Nutrition, 13(1), 41. https://doi.org/10.1186/s12970-016-0151-x
  • Connolly, D. A. J., McHugh, M. P., & Padilla-Zakour, O. I. (2006). Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. British journal of sports medicine, 40(8), 679-683. http://dx.doi.org/10.1136/bjsm.2005.025429
  • Crum, E. M., Barnes, M. J., & Stannard, S. R. (2018). Multiday pomegranate extract supplementation decreases oxygen uptake during submaximal cycling exercise, but cosupplementation with n-acetylcysteine negates the effect. International journal of sport nutrition and exercise metabolism, 28(6), 586-592. https://doi.org/10.1123/ijsnem.2017-0407
  • Allgrove, J., Farrell, E., Gleeson, M., Williamson, G., & Cooper, K. (2011). Regular dark chocolate consumption’s reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling. International journal of sport nutrition and exercise metabolism, 21(2), 113-123. https://doi.org/10.1123/ijsnem.21.2.113
  • Patel, R. K., Brouner, J., & Spendiff, O. (2015). Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling. Journal of the International Society of Sports Nutrition, 12(1), 47. https://doi.org/10.1186/s12970-015-0106-7
  • Chilelli, N. C., Ragazzi, E., Valentini, R., Cosma, C., Ferraresso, S., Lapolla, A., & Sartore, G. (2016). Curcumin and boswellia serrata modulate the glyco-oxidative status and lipo-oxidation in master athletes. Nutrients, 8(11), 745. https://doi.org/10.3390/nu8110745
  • McFarlin, B. K., Venable, A. S., Henning, A. L., Sampson, J. N. B., Pennel, K., Vingren, J. L., & Hill, D. W. (2016). Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA clinical, 5, 72-78. https://doi.org/10.1016/j.bbacli.2016.02.003
  • Basham Ms, Waldman H.S., Krings B.M Lamberth J., Smith J.E.W., McAllister, M.J. (2020) Effect of Curcumin Supplementation on Exercise-Induced Oxidative Stress, Inflammation, Muscle Damage, and Muscle Soreness. J Diet Suppl, 17(4), 401-414. https://doi.org/10.1080/19390211.2019.1604604
  • Pazır, F. & Alper, Y. (2016). Keçiboynuzu Meyvesi Ceratonia siliqua L. ve Sağlık . Akademik Gıda,14(3),302-306.Retrievedfrom https://dergipark.org.tr/tr/pub/akademik-gida/issue/55782/763560
  • Papagiannopoulos, M., Wollseifen, H. R., Mellenthin, A., Haber, B., & Galensa, R. (2004). Identification and quantification of polyphenols in Carob Fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MS n. Journal of agricultural and food chemistry, 52(12), 3784-3791

Polifenoller ve sportif performans üzerindeki etkileri

Year 2023, Volume: 2 Issue: 2, 225 - 243, 03.01.2024

Abstract

Polifenoller, bir diğer adıyla fenolik bileşikler; patojen organizmaların varlığı, ultraviyole ışına maruz kalma, olumsuz iklim koşulları gibi durumlarda bitkiler tarafından sentezlenen savunma mekanizmasında görev alan biyoaktif bileşenler olarak karşımıza çıkmaktadırlar. Günümüze kadar 8000’den fazla fenolik bileşik tanımlanmıştır. Doğal polifenoller; sebze, meyve, baklagiller, tahıllar, tohumların yenilebilir bitki kısımlarında, ayrıca kırmızı şarap ve kakao gibi besinlerde bulunmaktadır. Polifenol (PP) takviyelerinin kullanılmasının, tüm vücut antioksidan kapasitesini arttırdığı ve endotel fonksiyonunu modüle ettiği bildirilmektedir. Çeşitli epidemiyolojik çalışmalar ve klinik deneyler, birçok biyolojik aktivite sergileme özelliklerinden dolayı PP’lerin alımındaki artış ile bazı kronik hastalıkların (koroner kalp hastalığı, inme, tip II diyabet ve bazı kanser çeşitleri) oluşma riskinde azalma olduğunu kanıtlamışlardır. Aynı zamanda, sportif performans üzerinde yararlı olabilecek etkilerinden ötürü son yıllarda, sporcular tarafından antioksidan bileşiklerden zengin takviyelerin tüketiminin büyük ölçüde artmakta olduğu görülmektedir. Literatürde yer alan çalışma sonuçları, PP takviyelerinin kullanılmasının rekreasyonel, rekabetçi veya elit sporcuların lehine veya aleyhine olacağının önerisini vermede henüz yetersiz kalmaktadır. Bu anlamda, daha çok araştırmaya ve kanıta ihtiyaç bulunmaktadır. Daha yüksek oksidatif stres seviyelerine sahip olan sporcuların, antioksidan takviyelerine açıkça daha fazla ihtiyaç duyacağından, bu sporcularda ilk olarak oksidatif stres durumunun taranması önem arz etmektedir. Polifenollerin çok sayıda biyolojik etkileri bulunduğundan; gelecekteki egzersiz çalışmalarında yalnızca sportif performansa odaklanmak yerine, egzersiz ve seçilen PP takviyesi arasındaki fizyolojik etkileşimleri belirlemeye uygun ve spesifik bir şekilde çalışılması daha doğru olacaktır.

References

  • D’Angelo, S. (2019). Polyphenols and athletic performance: a review on human data. Plant physiological aspects of phenolic compounds, 1-24. https:// doi:10.5772/intechopen.85031
  • Stear, S. J., Burke, L. M., & Castell, L. M. (2009). BJSM reviews: A–Z of nutritional supplements: dietary supplements, sports nutrition foods and Ergogenic aids for health and performance Part 3. British Journal of Sports Medicine, 43(12), 890-892. http://dx.doi.org/10.1136/bjsm.2009.065417
  • Mankowski, R. T., Anton, S. D., Buford, T. W., & Leeuwenburgh, C. (2015). Dietary antioxidants as modifiers of physiologic adaptations to exercise. Medicine and science in sports and exercise, 47(9), 1857.
  • Overdevest, E., Wouters, J. A., Wolfs, K. H., van Leeuwen, J. J., & Possemiers, S. (2018). Citrus flavonoid supplementation improves exercise performance in trained athletes. Journal of sports science & medicine, 17(1), 24. ence and Medicine (2018) 17, 24-30 http://www.jssm.org PMC5844206
  • Malaguti, M., Angeloni, C., & Hrelia, S. (2013). Polyphenols in exercise performance and prevention of exercise-induced muscle damage. Oxidative medicine and cellular longevity, 2013. https://doi.org/10.1155/2013/825928
  • Wagner, K. H. (2015). Antioxidants in Sport Nutrition: All the Same Effectiveness?. https://www.ncbi.nlm.nih.gov/books/NBK299053/
  • Sellami, M., Slimeni, O., Pokrywka, A., Kuvačić, G., D Hayes, L., Milic, M., & Padulo, J. (2018). Herbal medicine for sports: a review. Journal of the International Society of Sports Nutrition, 15(1), 14. https://doi.org/10.1186/s12970-018-0218-y
  • Keli, S. O., Hertog, M. G., Feskens, E. J., & Kromhout, D. (1996). Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Archives of internal medicine, 156(6), 637-642. doi:10.1001/archinte.1996.00440060059007
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727-747. https://doi.org/10.1093/ajcn/79.5.727
  • Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American journal of clinical nutrition, 81(1), 230S-242S. https://doi.org/10.1093/ajcn/81.1.230S
  • Myburgh, K. H. (2014). Polyphenol supplementation: benefits for exercise performance or oxidative stress?. Sports Medicine, 44, 57-70. DOI 10.1007/s40279-014-0151-4
  • Jówko, E. (2015). Green tea catechins and sport performance. SPORT NUTRITION, 123. https://www.ncbi.nlm.nih.gov/books/NBK299060/
  • Machado, Á. S., Da Silva, W., Souza, M. A., & Carpes, F. P. (2018). Green tea extract preserves neuromuscular activation and muscle damage markers in athletes under cumulative fatigue. Frontiers in physiology, 9, 1137. https://doi.org/10.3389/fphys.2018.01137
  • Belviranli, M., & Okudan, N. (2015). Well-known antioxidants and newcomers in sport nutrition: coenzyme Q10, quercetin, resveratrol, pterostilbene, pycnogenol and astaxanthin. https://www.ncbi.nlm.nih.gov/books/NBK299046/
  • Novelle, M. G., Wahl, D., Diéguez, C., Bernier, M., & De Cabo, R. (2015). Resveratrol supplementation: where are we now and where should we go?. Ageing research reviews, 21, 1-15. https://doi.org/10.1016/j.arr.2015.01.002
  • Martins, N. C., Dorneles, G. P., Blembeel, A. S., Marinho, J. P., Proença, I. C. T., da Cunha Goulart, M. J. V., ... & Ribeiro, J. L. (2020). Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: A randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, 54, 102570. https://doi.org/10.1016/j.ctim.2020.102570
  • Pilolla, K. D., Armendariz, J., Burrus, B. M., Baston, D. S., McCarthy, K. A., & Bloedon, T. K. (2023). Effects of Wild Blueberries on Fat Oxidation Rates in Aerobically Trained Males. Nutrients, 15(6), 1339. https://doi.org/10.3390/nu15061339
  • Cavarretta, E., Peruzzi, M., Del Vescovo, R., Di Pilla, F., Gobbi, G., Serdoz, A., ... & Carnevale, R. (2018). Dark chocolate intake positively modulates redox status and markers of muscular damage in elite football athletes: A randomized controlled study. Oxidative medicine and cellular longevity, 2018. https://doi.org/10.1155/2018/4061901
  • Ammar, A., Turki, M., Hammouda, O., Chtourou, H., Trabelsi, K., Bouaziz, M., ... & Yaich, S. (2017). Effects of pomegranate juice supplementation on oxidative stress biomarkers following weightlifting exercise. Nutrients, 9(8), 819. https://doi.org/10.3390/nu9080819
  • Potter, J. A., Hodgson, C. I., Broadhurst, M., Howell, L., Gilbert, J., Willems, M. E., & Perkins, I. C. (2020). Effects of New Zealand blackcurrant extract on sport climbing performance. European journal of applied physiology, 120, 67-75. https://doi.org/10.1007/s00421-019-04226-2
  • Tanabe, Y., Chino, K., Sagayama, H., Lee, H. J., Ozawa, H., Maeda, S., & TAkAHASHI, H. (2019). Effective timing of curcumin ingestion to attenuate eccentric exercise-induced muscle soreness in men. Journal of nutritional science and vitaminology, 65(1), 82-89. https://doi.org/10.3177/jnsv.65.82
  • Maleki, B. H., Tartibian, B., Mooren, F. C., Krüger, K., FitzGerald, L. Z., & Chehrazi, M. (2016). A randomized controlled trial examining the effects of 16 weeks of moderate-to intensive cycling and honey supplementation on lymphocyte oxidative DNA damage and cytokine changes in male road cyclists. Cytokine, 88, 222-231. https://doi.org/10.1016/j.cyto.2016.09.016
  • Gaamouri, N., Zouhal, H., Hammami, M., Hackney, A. C., Abderrahman, A. B., Saeidi, A., ... & Ounis, O. B. (2019). Effects of polyphenol (carob) supplementation on body composition and aerobic capacity in taekwondo athletes. Physiology & behavior, 205, 22-28. https://doi.org/10.1016/j.physbeh.2019.03.003
  • Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford university press, USA. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
  • Bast A, Haenen GRMM. (2015) Chapter 2: Nutritional antioxidants it is time to categorise. In: Lamprecht M, editor. Antioxidants in Sport Nutrition. Boca Raton, FL: CRC Press/Taylor & Francis. https://www.ncbi.nlm.nih.gov/books/NBK299048/
  • Reid, M. B., Haack, K. E., Franchek, K. M., Valberg, P. A., Kobzik, L. E. S. T. E. R., & West, M. S. (1992). Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. Journal of applied physiology, 73(5), 1797-1804. https://doi.org/10.1152/jappl.1992.73.5.1797
  • Gomez-Cabrera, M. C., Domenech, E., Romagnoli, M., Arduini, A., Borras, C., Pallardo, F. V., ... & Vina, J. (2008). Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. The American journal of clinical nutrition, 87(1), 142-149. https://doi.org/10.1093/ajcn/87.1.142
  • Kerksick, C. M., & Zuhl, M. (2015). Mechanisms of oxidative damage and their impact on contracting muscle. Antioxidants in sport nutrition, Chapter-1. https://www.taylorfrancis.com/chapters/oa-edit/10.1201/b17442-1/mechanisms-oxidative-damage-impact-contracting-muscle-chad-kerksick-micah-zuhl (DOI:10.1201/b17442-1)
  • Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox biology, 4, 180-183. https://doi.org/10.1016/j.redox.2015.01.002
  • Kawamura, T., & Muraoka, I. (2018). Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants, 7(9), 119. https://doi.org/10.3390/antiox7090119
  • Webb, R., Hughes, M. G., Thomas, A. W., & Morris, K. (2017). The ability of exercise-associated oxidative stress to trigger redox-sensitive signalling responses. Antioxidants, 6(3), 63. https://doi.org/10.3390/antiox6030063
  • Tarhan, N. Keten tohumu ve diyabetik kardiyovasküler komplikasyonlar (Master's thesis, Sağlık Bilimleri Enstitüsü).
  • Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P., ... & Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322.
  • Williamson, G. (2017). The role of polyphenols in modern nutrition. Nutrition bulletin, 42(3), 226-235. https://doi.org/10.1111/nbu.12278
  • González-Castejón, M., & Rodriguez-Casado, A. (2011). Dietary phytochemicals and their potential effects on obesity: a review. Pharmacological research, 64(5), 438-455. https://doi.org/10.1016/j.phrs.2011.07.004
  • Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21(7), 901. https://doi.org/10.3390/molecules21070901
  • Hussain, M. B., Hassan, S., Waheed, M., Javed, A., Farooq, M. A., & Tahir, A. (2019). Bioavailability and metabolic pathway of phenolic compounds. In Plant physiological aspects of phenolic compounds. IntechOpen. DOI: 10.5772/intechopen.84745
  • Santos, R. M. M., & Lima, D. R. A. (2016). Coffee consumption, obesity and type 2 diabetes: a mini-review. European journal of nutrition, 55, 1345-1358. https:// doi: 10.1007/s00394-016-1206-0.
  • MacRae, H. S., & Mefferd, K. M. (2006). Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. International journal of sport nutrition and exercise metabolism, 16(4), 405-419. https://doi.org/10.1123/ijsnem.16.4.405
  • Darvishi, L., Ghiasvand, R., Hariri, M., Askari, G., Rezai, P., Aghaie, M., ... & Mashhadi, N. S. (2013). Quercetin supplementation does not attenuate exercise performance and body composition in young female swimmers. International Journal of Preventive Medicine, 4(Suppl 1), S43. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665024/
  • O’Fallon, K. S., Kaushik, D., Michniak-Kohn, B., Dunne, C. P., Zambraski, E. J., & Clarkson, P. M. (2012). Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. International journal of sport nutrition and exercise metabolism, 22(6), 430-437. https://doi.org/10.1123/ijsnem.22.6.430
  • Daneshvar, P., Hariri, M., Ghiasvand, R., Askari, G., Darvishi, L., Mashhadi, N. S., & Khosravi-Boroujeni, H. (2013). Effect of eight weeks of quercetin supplementation on exercise performance, muscle damage and body muscle in male badminton players. International journal of preventive medicine, 4(Suppl 1), S53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665027/
  • Askari, G., Ghiasvand, R., Karimian, J., Feizi, A., Paknahad, Z., Sharifirad, G., & Hajishafiei, M. (2012). Does quercetin and vitamin C improve exercise performance, muscle damage, and body composition in male athletes?. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 17(4), 328. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526124/
  • Somerville, V., Bringans, C., & Braakhuis, A. (2017). Polyphenols and performance: a systematic review and meta-analysis. Sports Medicine, 47, 1589-1599. https://doi.org/10.1007/s40279-017-0675-5
  • Sgrò, P., Ceci, R., Lista, M., Patrizio, F., Sabatini, S., Felici, F., ... & Di Luigi, L. (2021). Quercetin modulates IGF-I and IGF-II levels after eccentric exercise-induced muscle-damage: a placebo-controlled study. Frontiers in Endocrinology, 1412. https://doi.org/10.3389/fendo.2021.745959
  • Martin-Rincon, M., Gelabert-Rebato, M., Galvan-Alvarez, V., Gallego-Selles, A., Martinez-Canton, M., Lopez-Rios, L., ... & Calbet, J. A. (2020). Supplementation with a mango leaf extract (Zynamite®) in combination with quercetin attenuates muscle damage and pain and accelerates recovery after strenuous damaging exercise. Nutrients, 12(3), 614. https://doi.org/10.3390/nu12030614
  • Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition reviews, 56(11), 317-333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
  • Tzima, K., Brunton, N. P., & Rai, D. K. (2018). Qualitative and quantitative analysis of polyphenols in Lamiaceae plants—A review. Plants, 7(2), 25. https://doi.org/10.3390/plants7020025
  • Mattera, R., Benvenuto, M., Giganti, M. G., Tresoldi, I., Pluchinotta, F. R., Bergante, S., ... & Bei, R. (2017). Effects of polyphenols on oxidative stress-mediated injury in cardiomyocytes. Nutrients, 9(5), 523. https://doi.org/10.3390/nu9050523
  • Jówko, E., Długołęcka, B., Makaruk, B., & Cieśliński, I. (2015). The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. European journal of nutrition, 54, 783-791.
  • Panza, V. S. P., Wazlawik, E., Schütz, G. R., Comin, L., Hecht, K. C., & da Silva, E. L. (2008). Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition, 24(5), 433-442. https://doi.org/10.1016/j.nut.2008.01.009
  • Sobhani, V., Mehrtash, M., Shirvani, H., & Fasihi-Ramandi, M. (2020). Effects of short-term green tea extract supplementation on VO2 max and inflammatory and antioxidant responses of healthy young men in a hot environment. International Journal of Preventive Medicine, 11. https://doi.org/ 10.4103/ijpvm.IJPVM_64_19
  • Sadowska-Krępa, E., Domaszewski, P., Pokora, I., Żebrowska, A., Gdańska, A., & Podgórski, T. (2019). Effects of medium-term green tea extract supplementation combined with CrossFit workout on blood antioxidant status and serum brain-derived neurotrophic factor in young men: A pilot study. Journal of the International Society of Sports Nutrition, 16(1), 13. https://doi.org/10.1186/s12970-019-0280-0
  • Dolinsky, V. W., Jones, K. E., Sidhu, R. S., Haykowsky, M., Czubryt, M. P., Gordon, T., & Dyck, J. R. (2012). Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. The Journal of physiology, 590(11), 2783-2799. https://doi.org/10.1113/jphysiol.2012.230490
  • Hart, N., Sarga, L., Csende, Z., Koltai, E., Koch, L. G., Britton, S. L., ... & Radak, Z. (2013). Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food and chemical toxicology, 61, 53-59. https://doi.org/10.1016/j.fct.2013.01.051
  • Price, N. L., Gomes, A. P., Ling, A. J., Duarte, F. V., Martin-Montalvo, A., North, B. J., ... & Sinclair, D. A. (2012). SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell metabolism, 15(5), 675-690. https://doi.org/10.1016/j.cmet.2012.04.003
  • McAnulty, L. S., Miller, L. E., Hosick, P. A., Utter, A. C., Quindry, J. C., & McAnulty, S. R. (2013). Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise. Applied Physiology, Nutrition, and Metabolism, 38(7), 760-765. https://doi.org/10.1139/apnm-2012-0455
  • Dolinsky, V. W., & Dyck, J. R. (2014). Experimental studies of the molecular pathways regulated by exercise and resveratrol in heart, skeletal muscle and the vasculature. Molecules, 19(9), 14919-14947. https://doi.org/10.3390/molecules190914919
  • Martins, N. C., Dorneles, G. P., Blembeel, A. S., Marinho, J. P., Proença, I. C. T., da Cunha Goulart, M. J. V., ... & Ribeiro, J. L. (2020). Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: A randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, 102570. https://doi.org/10.1016/j.ctim.2020.102570
  • De Lima Tavares Toscano, L., Silva, A. S., de França, A. C. L., de Sousa, B. R. V., de Almeida Filho, E. J. B., da Silveira Costa, M., ... & da Conceição Rodrigues Gonçalves, M. (2020). A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. European Journal of Nutrition, 59, 2997-3007. https://doi.org/10.1007/s00394-020-02453-4
  • Tsao, J. P., Liu, C. C., Wang, H. F., Bernard, J. R., Huang, C. C., & Cheng, I. S. (2021). Oral Resveratrol supplementation attenuates exercise-induced Interleukin-6 but not Oxidative Stress after a high intensity cycling challenge in adults. International Journal of Medical Sciences, 18(10), 2137. https://www.medsci.org/v18p2137.htm
  • Baltaci, S. B., Mogulkoc, R., & Baltaci, A. K. (2016). Resveratrol and exercise. Biomedical reports, 5(5), 525-530. https://doi.org/10.3892/br.2016.777
  • De Sousa, B. R. V., de Lima Tavares Toscano, L., de Almeida Filho, E. J. B., Sena, K. F., Costa, M. S., de Souza Cunha, R. C., ... & Silva, A. S. (2022). Purple grape juice improves performance of recreational runners, but the effect is genotype dependent: a double blind, randomized, controlled trial. Genes & Nutrition, 17(1), 1-14. https://doi.org/10.1186/s12263-022-00710-1
  • Hurst, R. D., Wells, R. W., Hurst, S. M., McGhie, T. K., Cooney, J. M., & Jensen, D. J. (2010). Blueberry fruit polyphenolics suppress oxidative stress‐induced skeletal muscle cell damage in vitro. Molecular nutrition & food research, 54(3), 353-363. https://doi.org/10.1002/mnfr.200900094
  • Lynn, A., Garner, S., Nelson, N., Simper, T. N., Hall, A. C., & Ranchordas, M. K. (2018). Effect of bilberry juice on indices of muscle damage and inflammation in runners completing a half-marathon: A randomised, placebo-controlled trial. Journal of the International Society of Sports Nutrition, 15(1), 22. https://doi.org/10.1186/s12970-018-0227-x
  • Castro-Acosta, M. L., Smith, L., Miller, R. J., McCarthy, D. I., Farrimond, J. A., & Hall, W. L. (2016). Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin .concentrations. The Journal of Nutritional Biochemistry, 38, 154-161. https://doi.org/10.1016/j.jnutbio.2016.09.002
  • Godwin, C., Cook, M. D., & Willems, M. E. (2017). Effect of New Zealand blackcurrant extract on performance during the running based anaerobic sprint test in trained youth and recreationally active male football players. Sports, 5(3), 69. https://doi.org/10.3390/sports5030069
  • Strauss, J. A., Willems, M. E., & Shepherd, S. O. (2018). New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females. European journal of applied physiology, 118, 1265-1272. https://doi.org/10.1007/s00421-018-3858-3
  • Bell, P. G., McHugh, M. P., Stevenson, E., & Howatson, G. (2014). The role of cherries in exercise and health. Scandinavian journal of medicine & science in sports, 24(3), 477-490. https://doi.org/10.1111/sms.12085
  • Bell, P. G., Walshe, I. H., Davison, G. W., Stevenson, E., & Howatson, G. (2014). Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients, 6(2), 829-843. https://doi.org/10.3390/nu6020829
  • McCormick, R., Peeling, P., Binnie, M., Dawson, B., & Sim, M. (2016). Effect of tart cherry juice on recovery and next day performance in well-trained Water Polo players. Journal of the International Society of Sports Nutrition, 13(1), 41. https://doi.org/10.1186/s12970-016-0151-x
  • Connolly, D. A. J., McHugh, M. P., & Padilla-Zakour, O. I. (2006). Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. British journal of sports medicine, 40(8), 679-683. http://dx.doi.org/10.1136/bjsm.2005.025429
  • Crum, E. M., Barnes, M. J., & Stannard, S. R. (2018). Multiday pomegranate extract supplementation decreases oxygen uptake during submaximal cycling exercise, but cosupplementation with n-acetylcysteine negates the effect. International journal of sport nutrition and exercise metabolism, 28(6), 586-592. https://doi.org/10.1123/ijsnem.2017-0407
  • Allgrove, J., Farrell, E., Gleeson, M., Williamson, G., & Cooper, K. (2011). Regular dark chocolate consumption’s reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling. International journal of sport nutrition and exercise metabolism, 21(2), 113-123. https://doi.org/10.1123/ijsnem.21.2.113
  • Patel, R. K., Brouner, J., & Spendiff, O. (2015). Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling. Journal of the International Society of Sports Nutrition, 12(1), 47. https://doi.org/10.1186/s12970-015-0106-7
  • Chilelli, N. C., Ragazzi, E., Valentini, R., Cosma, C., Ferraresso, S., Lapolla, A., & Sartore, G. (2016). Curcumin and boswellia serrata modulate the glyco-oxidative status and lipo-oxidation in master athletes. Nutrients, 8(11), 745. https://doi.org/10.3390/nu8110745
  • McFarlin, B. K., Venable, A. S., Henning, A. L., Sampson, J. N. B., Pennel, K., Vingren, J. L., & Hill, D. W. (2016). Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA clinical, 5, 72-78. https://doi.org/10.1016/j.bbacli.2016.02.003
  • Basham Ms, Waldman H.S., Krings B.M Lamberth J., Smith J.E.W., McAllister, M.J. (2020) Effect of Curcumin Supplementation on Exercise-Induced Oxidative Stress, Inflammation, Muscle Damage, and Muscle Soreness. J Diet Suppl, 17(4), 401-414. https://doi.org/10.1080/19390211.2019.1604604
  • Pazır, F. & Alper, Y. (2016). Keçiboynuzu Meyvesi Ceratonia siliqua L. ve Sağlık . Akademik Gıda,14(3),302-306.Retrievedfrom https://dergipark.org.tr/tr/pub/akademik-gida/issue/55782/763560
  • Papagiannopoulos, M., Wollseifen, H. R., Mellenthin, A., Haber, B., & Galensa, R. (2004). Identification and quantification of polyphenols in Carob Fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MS n. Journal of agricultural and food chemistry, 52(12), 3784-3791
There are 80 citations in total.

Details

Primary Language English
Subjects Nutrition and Dietetics (Other)
Journal Section Reviews
Authors

Ebrar Tuşat 0009-0000-7509-4273

Eda Parlak 0000-0003-1452-1547

Publication Date January 3, 2024
Submission Date September 4, 2023
Published in Issue Year 2023 Volume: 2 Issue: 2

Cite

APA Tuşat, E., & Parlak, E. (2024). Polyphenols and their effects on sportive performance. Toros University Journal of Food Nutrition and Gastronomy, 2(2), 225-243.
AMA Tuşat E, Parlak E. Polyphenols and their effects on sportive performance. JFNG. January 2024;2(2):225-243.
Chicago Tuşat, Ebrar, and Eda Parlak. “Polyphenols and Their Effects on Sportive Performance”. Toros University Journal of Food Nutrition and Gastronomy 2, no. 2 (January 2024): 225-43.
EndNote Tuşat E, Parlak E (January 1, 2024) Polyphenols and their effects on sportive performance. Toros University Journal of Food Nutrition and Gastronomy 2 2 225–243.
IEEE E. Tuşat and E. Parlak, “Polyphenols and their effects on sportive performance”, JFNG, vol. 2, no. 2, pp. 225–243, 2024.
ISNAD Tuşat, Ebrar - Parlak, Eda. “Polyphenols and Their Effects on Sportive Performance”. Toros University Journal of Food Nutrition and Gastronomy 2/2 (January 2024), 225-243.
JAMA Tuşat E, Parlak E. Polyphenols and their effects on sportive performance. JFNG. 2024;2:225–243.
MLA Tuşat, Ebrar and Eda Parlak. “Polyphenols and Their Effects on Sportive Performance”. Toros University Journal of Food Nutrition and Gastronomy, vol. 2, no. 2, 2024, pp. 225-43.
Vancouver Tuşat E, Parlak E. Polyphenols and their effects on sportive performance. JFNG. 2024;2(2):225-43.