Research Article
BibTex RIS Cite

Çeşitli gıda örnekleri ve kesimhanelerden izole edilen bazı patojen bakterilerin biyofilm oluşturma yeteneğinin araştırılması

Year 2022, Volume: 7 Issue: 3, 338 - 345, 31.12.2022
https://doi.org/10.31797/vetbio.1194207

Abstract

Biyofilmler, bakterilere güçlü tolerans ve uygun yaşam ortamları sağlayan, ekstraselüler polimerik maddelere gömülü mikroorganizmalar topluluğudur. Çoğu patojen özellikteki mikroorganizma, uygun koşullar oluştuğunda gıdalarda ve gıda ile temas eden yüzeylerde biyofilm oluşturarak gıda endüstrisinde ve halk sağlığı açısından sorunlara yol açmaktadır. Bu çalışmada, daha önceki çalışmalarla çeşitli gıda örnekleri ve kesimhane ortamından izole edilen ve moleküler yöntemlerle identifiye edilmiş, toplam 120 Salmonella Virchow, Salmonella Infantis, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium izolatı materyal olarak kullanıldı. Biyofilm oluşumunun kalitatif olarak tespiti amacıyla Kongo Kırmızısı Agar kullanıldı. Yapılan analizler doğrultusunda, toplam 120 izolattan 15’inin (%12,5) kalitatif olarak biyofilm ürettiği tespit edildi. Kalitatif olarak biyofilm oluşturduğu tespit edilen suşların biyofilm oluşturma gücü mikroplak yöntemiyle kantitatif olarak araştırıldı. Mikroplak yöntemine göre 2 E. faecium ve 1 E. faecalis suşu güçlü biyofilm üreticisi; 2 L. monocytogenes (serotip 1/2a) suşu orta düzey biyofilm üreticisi; 4 E. coli, 4 S. aureus ve 2 L. monocytogenes (serotip 1/2a ve serotip 4b) suşu zayıf biyofilm üreticisi olarak belirlendi. Salmonella spp. suşlarının tümü biyofilm üretimi açısından negatif olarak belirlendi. Sonuç olarak; süt, mandıra ürünleri, tüketime hazır gıdalar ve kesimhanelerden izole edilen bakterilerde biyofilm üretiminin hem halk sağlığı hem de gıda işletmeleri için önemli olduğu düşünülmektedir. Bu nedenle, gıda işleme tesislerinde, üretim hattı boyunca temizlik ve dezenfeksiyon işlemlerinin gerçekleştirilmesinde HACCP, İyi Üretim Uygulamaları gibi gıda sanitasyon sistemlerine riayet edilmesinin biofilm oluşumunun önüne geçilmesinde faydalı olacağı öngörülmektedir.

References

  • Açıkalın, D. (2017). Salmonella Infantis suşlarının oluşturduğu biyofilm üzerine çevresel ve genetik faktörlerin etkisinin araştırılması [Yüksek Lisans Tezi, Ankara Üniversitesi, Sağlık Bilimleri Enstitüsü].
  • Akinola, S. A., Tshimpamba, M. E., Mwanza, M., & Ateba, C. N. (2020). Biofilm Production Potential of Serovars Isolated from Chickens in North West Province, South Africa. Polish Journal of Microbiology, 69(4), 427-439.
  • Barbosa, J., Gibbs, P., & Teixeira, P. (2010). Virulence factors among enterococci isolated from traditional fermented meat products produced in the North of Portugal. Food Control, 21(5), 651-656.
  • Borges, K. A., Furian, T. Q., de Souza, S. N., Menezes, R., de Lima, D. A., Fortes, F. B. B., Salle, C. T. P., Moraes, H. L. S., & Nascimento, V. P. (2018). Biofilm formation by Salmonella Enteritidis and Salmonella Typhimurium isolated from avian sources is partially related with their in vivo pathogenicity. Microbial Pathogenesis, 118, 238-241.
  • Borucki, M. K., Peppin, J. D., White, D., Loge, F., & Call, D. R. (2003). Variation in biofilm formation among strains of Listeria monocytogenes. Applied and Environmental Microbiology, 69(12), 7336-7342.
  • Chen, Q., Xie, S., Lou, X., Cheng, S., Liu, X., Zheng, W., Zheng, Z., & Wang, H. (2020). Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Microbiologyopen, 9(1), e00946.
  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49(1), 711-745.
  • Cufaoglu, G., Acar, B. O., Cengiz, G., Ayaz, N. D., & Goncuoglu, M. (2021). Mono-and Mixed-Species Biofilm Formation by Salmonella Infantis, Salmonella Kentucky, Enterococcus faecium, and Enterococcus faecalis. Acta Veterinaria Eurasia, 47(3), 149-154.
  • Çadırcı, O., Gucukoglu, A., Gulel, G. T., Gunaydin, E., Uyanik, T., & Kanat, S. (2021). Determination and antibiotic resistance profiles of Salmonella serotypes isolated from poultry meat. Fresenius Environmental Bulletin, 30, 4251-4261.
  • Çadırcı, Ö., Gücükoğlu, A., Terzi, G. T., Uyanik, T., & Alişarlı, M. (2018). The existence of Listeria monocytogenes in a cattle slaughterhouse and identification of serotypes by mPCR. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65(3), 305-311.
  • De la Fuente-Núñez, C., Reffuveille, F., Fernández, L., & Hancock, R. E. (2013). Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Current Opinion in Microbiology, 16(5), 580-589.
  • Diaz, M., Ladero, V., Del Rio, B., Redruello, B., Fernández, M., Martin, M. C., & Alvarez, M. A. (2016). Biofilm-forming capacity in biogenic amine-producing bacteria isolated from dairy products. Frontiers in Microbiology, 7, 591.
  • Díez-García, M., Capita, R., & Alonso-Calleja, C. (2012). Influence of serotype on the growth kinetics and the ability to form biofilms of Salmonella isolates from poultry. Food Microbiology, 31(2), 173-180.
  • Doijad, S. P., Barbuddhe, S. B., Garg, S., Poharkar, K. V., Kalorey, D. R., Kurkure, N. V., Rawool, D. B., & Chakraborty, T. (2015). Biofilm-forming abilities of Listeria monocytogenes serotypes isolated from different sources. PloS One, 10(9), e0137046.
  • Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881.
  • El-Zamkan, M. A., & Mohamed, H. M. (2021). Antimicrobial resistance, virulence genes and biofilm formation in Enterococcus species isolated from milk of sheep and goat with subclinical mastitis. PloS One, 16(11), e0259584.
  • Flament-Simon, S.-C., Duprilot, M., Mayer, N., García, V., Alonso, M. P., Blanco, J., & Nicolas-Chanoine, M.-H. (2019). Association between kinetics of early biofilm formation and clonal lineage in Escherichia coli. Frontiers in Microbiology, 10, 1183.
  • Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633.
  • Freeman, D., Falkiner, F., & Keane, C. (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology, 42(8), 872-874.
  • Fysun, O., Kern, H., Wilke, B., & Langowski, H.-C. (2019). Evaluation of factors influencing dairy biofilm formation in filling hoses of food-processing equipment. Food and Bioproducts Processing, 113, 39-48.
  • Gómez, N. C., Ramiro, J. M., Quecan, B. X., & de Melo Franco, B. D. (2016). Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157: H7 biofilms formation. Frontiers in Microbiology, 863.
  • Gücükoğlu, A., Onur Kevenk, T., Uyanik, T., Çadirci, Ö., Terzi, G., & Alişarli, M. (2012). Detection of enterotoxigenic Staphylococcus aureus in raw milk and dairy products by multiplex PCR. Journal of Food Science, 77(11), M620-M623.
  • Gündoğan, N., & Ataol, Ö. (2012). Et örneklerinden izole edilen Staphylococcus aureus ve koagülaz negatif stafilokok’ların biyofilm üretimi ve DNaz aktivitelerinin belirlenmesi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 69(3), 135-142.
  • Gürkan, T., Külahcı, M. B., & Çıtak, S. (2021). Gıda örneklerinden izole edilen Enterococcus türlerinin çeşitli virülans özellikleri, biyofilm oluşumu ve antibiyotik dirençliliklerinin belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi(28), 924-932.
  • Harvey, J., Keenan, K., & Gilmour, A. (2007). Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiology, 24(4), 380-392.
  • Høiby, N. (2017). A short history of microbial biofilms and biofilm infections. Apmis, 125(4), 272-275.
  • İset, Ş. (2016). Çeşitli gıda örneklerinden izole edilen salmonella ve listeria monocytogenes suşlarının biyofilm oluşturma yeteneklerinin araştırılması ve elektron mikroskobik tekniklerle değerlendirilmesi [Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü].
  • Kadam, S. R., den Besten, H. M., van der Veen, S., Zwietering, M. H., Moezelaar, R., & Abee, T. (2013). Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth condition, serotype and strain origin. International Journal of Food Microbiology, 165(3), 259-264.
  • Kankaya, D. A., Tuncer, B. Ö., & Tuncer, Y. (2017). Gida kaynakli enterokoklarin potansiyel risk faktörleri. Gıda, 42(1), 8-19. Manandhar, S., Singh, A., Varma, A., Pandey, S., & Shrivastava, N. (2018). Biofilm producing clinical Staphylococcus aureus isolates augmented prevalence of antibiotic resistant cases in tertiary care hospitals of Nepal. Frontiers in Microbiology, 9, 2749.
  • Moretro, T., Langsrud, S., & Heir, E. (2013). Bacteria on meat abattoir process surfaces after sanitation: Characterisation of survival properties of Listeria monocytogenes and the commensal bacterial flora.
  • Özkök, Z., Bilgin, K., Tanrıverdi Çaycı, Y., & Birinci, A. (2021). Investigation of biofilm formation of Enterococcus species isolated from blood by phenotypic and genotypic methods. Turkish Bulletin of Hygiene and Experimental Biology, 78(3), 363-372.
  • Pan, Y., Breidt Jr, F., & Gorski, L. (2010). Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes serotype 1/2a and 4b strains. Applied and Environmental Microbiology, 76(5), 1433-1441.
  • Rahman, M. U., Fleming, D. F., Sinha, I., Rumbaugh, K. P., Gordon, V. D., & Christopher, G. F. (2021). Effect of collagen and EPS components on the viscoelasticity of Pseudomonas aeruginosa biofilms. Soft Matter, 17(25), 6225-6237.
  • Rodrigues, L. B., Santos, L. R. d., Tagliari, V. Z., Rizzo, N. N., Trenhago, G., Oliveira, A. P. d., Goetz, F., & Nascimento, V. P. d. (2010). Quantification of biofilm production on polystyrene by Listeria, Escherichia coli and Staphylococcus aureus isolated from a poultry slaughterhouse. Brazilian Journal of Microbiology, 41, 1082-1085.
  • Shi, X., & Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science and Technology, 20(9), 407-413.
  • Soni, K. A., & Nannapaneni, R. (2010). Removal of Listeria monocytogenes biofilms with bacteriophage P100. Journal of Food Protection, 73(8), 1519-1524.
  • Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukić, S., Ćirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis, 115(8), 891-899.
  • Tajbakhsh, E., Ahmadi, P., Abedpour-Dehkordi, E., Arbab-Soleimani, N., & Khamesipour, F. (2016). Biofilm formation, antimicrobial susceptibility, serogroups and virulence genes of uropathogenic E. coli isolated from clinical samples in Iran. Antimicrobial Resistance and Infection Control, 5(1), 1-8.
  • Thiran, E., Di Ciccio, P., Graber, H., Zanardi, E., Ianieri, A., & Hummerjohann, J. (2018). Biofilm formation of Staphylococcus aureus dairy isolates representing different genotypes. Journal of Dairy Science, 101(2), 1000-1012.
  • Uyanik, T. (2022). Samsun ilindeki hastane kantinlerinde satışa sunulan tüketime hazır sandviçlerde genişlemiş spektrumlu beta-laktamaz üreten Escherichia coli varlığının araştırılması. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 19(1), 37-42.
  • Var, I., & Sağlam, S. (2017). Biofilm Structure of foodborne pathogens. Antimicrobial Research: Novel bioknowledge and educational programs Microbiology Book Series, 6, 301-307.
  • Wang, Y., Yi, L., Wang, Y., Wang, Y., Cai, Y., Zhao, W., & Ding, C. (2016). Isolation, phylogenetic group, drug resistance, biofilm formation, and adherence genes of Escherichia coli from poultry in central China. Poultry Science, 95(12), 2895-2901.
  • Woo, J., & Ahn, J. (2013). Probiotic‐mediated competition, exclusion and displacement in biofilm formation by food‐borne pathogens. Letters in Applied Microbiology, 56(4), 307-313.
  • Zarzecka, U., Zadernowska, A., & Chajęcka-Wierzchowska, W. (2022). Effects of osmotic and high pressure stress on expression of virulence factors among Enterococcus spp. isolated from food of animal origin. Food Microbiology, 102, 103900.
  • Zhao, X., Zhao, F., Wang, J., & Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 7(58), 36670-36683.
  • Zheng, J.-x., Bai, B., Lin, Z.-w., Pu, Z.-y., Yao, W.-m., Chen, Z., Li, D.-y., Deng, X.-b., Deng, Q.-w., & Yu, Z.-j. (2018). Characterization of biofilm formation by Enterococcus faecalis isolates derived from urinary tract infections in China. Journal of Medical Microbiology, 67(1), 60.

Evaluation of biofilm forming ability of some pathogenic bacteria Isolated from various food samples and slaughterhouses

Year 2022, Volume: 7 Issue: 3, 338 - 345, 31.12.2022
https://doi.org/10.31797/vetbio.1194207

Abstract

Biofilms are ensemble of microorganisms embedded in extracellular polymeric substances that providing bacteria strong tolerance and suitable habitats. In this study, a total of 120 Salmonella Virchow, Salmonella Infantis, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium isolates, which were isolated from various food samples and slaughterhouse environment and identified by molecular methods, were used as material. Congo Red Agar was used for the qualitative detection of biofilm formation. According to results, it was determined that 15 (12,5%) out of 120 isolates produced biofilm qualitatively. Biofilm forming levels of qualitative biofilm producers were later quantitatively investigated by microplate method. According to the microplate method, 2 E. faecium and 1 E. faecalis strains are strong biofilm producers; 2 strains of L. monocytogenes (serotype 1/2a) are moderate biofilm producers; 4 strains of E. coli, 4 S. aureus and 2 L. monocytogenes (serotype 1/2a and serotype 4b) were determined as weak biofilm producers. All Salmonella spp. strains were negative for biofilm production. As a result; it is thought that biofilm production in bacteria isolated from milk, dairy products, ready-to-eat foods and slaughterhouses is important for both public health and food industry. It is anticipated that, in the cleaning and disinfection of food processing facilities, compliance with food sanitation systems such as HACCP and Good Manufacturing Practices will be beneficial to prevent biofilm formation.

References

  • Açıkalın, D. (2017). Salmonella Infantis suşlarının oluşturduğu biyofilm üzerine çevresel ve genetik faktörlerin etkisinin araştırılması [Yüksek Lisans Tezi, Ankara Üniversitesi, Sağlık Bilimleri Enstitüsü].
  • Akinola, S. A., Tshimpamba, M. E., Mwanza, M., & Ateba, C. N. (2020). Biofilm Production Potential of Serovars Isolated from Chickens in North West Province, South Africa. Polish Journal of Microbiology, 69(4), 427-439.
  • Barbosa, J., Gibbs, P., & Teixeira, P. (2010). Virulence factors among enterococci isolated from traditional fermented meat products produced in the North of Portugal. Food Control, 21(5), 651-656.
  • Borges, K. A., Furian, T. Q., de Souza, S. N., Menezes, R., de Lima, D. A., Fortes, F. B. B., Salle, C. T. P., Moraes, H. L. S., & Nascimento, V. P. (2018). Biofilm formation by Salmonella Enteritidis and Salmonella Typhimurium isolated from avian sources is partially related with their in vivo pathogenicity. Microbial Pathogenesis, 118, 238-241.
  • Borucki, M. K., Peppin, J. D., White, D., Loge, F., & Call, D. R. (2003). Variation in biofilm formation among strains of Listeria monocytogenes. Applied and Environmental Microbiology, 69(12), 7336-7342.
  • Chen, Q., Xie, S., Lou, X., Cheng, S., Liu, X., Zheng, W., Zheng, Z., & Wang, H. (2020). Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Microbiologyopen, 9(1), e00946.
  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49(1), 711-745.
  • Cufaoglu, G., Acar, B. O., Cengiz, G., Ayaz, N. D., & Goncuoglu, M. (2021). Mono-and Mixed-Species Biofilm Formation by Salmonella Infantis, Salmonella Kentucky, Enterococcus faecium, and Enterococcus faecalis. Acta Veterinaria Eurasia, 47(3), 149-154.
  • Çadırcı, O., Gucukoglu, A., Gulel, G. T., Gunaydin, E., Uyanik, T., & Kanat, S. (2021). Determination and antibiotic resistance profiles of Salmonella serotypes isolated from poultry meat. Fresenius Environmental Bulletin, 30, 4251-4261.
  • Çadırcı, Ö., Gücükoğlu, A., Terzi, G. T., Uyanik, T., & Alişarlı, M. (2018). The existence of Listeria monocytogenes in a cattle slaughterhouse and identification of serotypes by mPCR. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65(3), 305-311.
  • De la Fuente-Núñez, C., Reffuveille, F., Fernández, L., & Hancock, R. E. (2013). Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Current Opinion in Microbiology, 16(5), 580-589.
  • Diaz, M., Ladero, V., Del Rio, B., Redruello, B., Fernández, M., Martin, M. C., & Alvarez, M. A. (2016). Biofilm-forming capacity in biogenic amine-producing bacteria isolated from dairy products. Frontiers in Microbiology, 7, 591.
  • Díez-García, M., Capita, R., & Alonso-Calleja, C. (2012). Influence of serotype on the growth kinetics and the ability to form biofilms of Salmonella isolates from poultry. Food Microbiology, 31(2), 173-180.
  • Doijad, S. P., Barbuddhe, S. B., Garg, S., Poharkar, K. V., Kalorey, D. R., Kurkure, N. V., Rawool, D. B., & Chakraborty, T. (2015). Biofilm-forming abilities of Listeria monocytogenes serotypes isolated from different sources. PloS One, 10(9), e0137046.
  • Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881.
  • El-Zamkan, M. A., & Mohamed, H. M. (2021). Antimicrobial resistance, virulence genes and biofilm formation in Enterococcus species isolated from milk of sheep and goat with subclinical mastitis. PloS One, 16(11), e0259584.
  • Flament-Simon, S.-C., Duprilot, M., Mayer, N., García, V., Alonso, M. P., Blanco, J., & Nicolas-Chanoine, M.-H. (2019). Association between kinetics of early biofilm formation and clonal lineage in Escherichia coli. Frontiers in Microbiology, 10, 1183.
  • Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633.
  • Freeman, D., Falkiner, F., & Keane, C. (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology, 42(8), 872-874.
  • Fysun, O., Kern, H., Wilke, B., & Langowski, H.-C. (2019). Evaluation of factors influencing dairy biofilm formation in filling hoses of food-processing equipment. Food and Bioproducts Processing, 113, 39-48.
  • Gómez, N. C., Ramiro, J. M., Quecan, B. X., & de Melo Franco, B. D. (2016). Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157: H7 biofilms formation. Frontiers in Microbiology, 863.
  • Gücükoğlu, A., Onur Kevenk, T., Uyanik, T., Çadirci, Ö., Terzi, G., & Alişarli, M. (2012). Detection of enterotoxigenic Staphylococcus aureus in raw milk and dairy products by multiplex PCR. Journal of Food Science, 77(11), M620-M623.
  • Gündoğan, N., & Ataol, Ö. (2012). Et örneklerinden izole edilen Staphylococcus aureus ve koagülaz negatif stafilokok’ların biyofilm üretimi ve DNaz aktivitelerinin belirlenmesi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 69(3), 135-142.
  • Gürkan, T., Külahcı, M. B., & Çıtak, S. (2021). Gıda örneklerinden izole edilen Enterococcus türlerinin çeşitli virülans özellikleri, biyofilm oluşumu ve antibiyotik dirençliliklerinin belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi(28), 924-932.
  • Harvey, J., Keenan, K., & Gilmour, A. (2007). Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiology, 24(4), 380-392.
  • Høiby, N. (2017). A short history of microbial biofilms and biofilm infections. Apmis, 125(4), 272-275.
  • İset, Ş. (2016). Çeşitli gıda örneklerinden izole edilen salmonella ve listeria monocytogenes suşlarının biyofilm oluşturma yeteneklerinin araştırılması ve elektron mikroskobik tekniklerle değerlendirilmesi [Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü].
  • Kadam, S. R., den Besten, H. M., van der Veen, S., Zwietering, M. H., Moezelaar, R., & Abee, T. (2013). Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth condition, serotype and strain origin. International Journal of Food Microbiology, 165(3), 259-264.
  • Kankaya, D. A., Tuncer, B. Ö., & Tuncer, Y. (2017). Gida kaynakli enterokoklarin potansiyel risk faktörleri. Gıda, 42(1), 8-19. Manandhar, S., Singh, A., Varma, A., Pandey, S., & Shrivastava, N. (2018). Biofilm producing clinical Staphylococcus aureus isolates augmented prevalence of antibiotic resistant cases in tertiary care hospitals of Nepal. Frontiers in Microbiology, 9, 2749.
  • Moretro, T., Langsrud, S., & Heir, E. (2013). Bacteria on meat abattoir process surfaces after sanitation: Characterisation of survival properties of Listeria monocytogenes and the commensal bacterial flora.
  • Özkök, Z., Bilgin, K., Tanrıverdi Çaycı, Y., & Birinci, A. (2021). Investigation of biofilm formation of Enterococcus species isolated from blood by phenotypic and genotypic methods. Turkish Bulletin of Hygiene and Experimental Biology, 78(3), 363-372.
  • Pan, Y., Breidt Jr, F., & Gorski, L. (2010). Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes serotype 1/2a and 4b strains. Applied and Environmental Microbiology, 76(5), 1433-1441.
  • Rahman, M. U., Fleming, D. F., Sinha, I., Rumbaugh, K. P., Gordon, V. D., & Christopher, G. F. (2021). Effect of collagen and EPS components on the viscoelasticity of Pseudomonas aeruginosa biofilms. Soft Matter, 17(25), 6225-6237.
  • Rodrigues, L. B., Santos, L. R. d., Tagliari, V. Z., Rizzo, N. N., Trenhago, G., Oliveira, A. P. d., Goetz, F., & Nascimento, V. P. d. (2010). Quantification of biofilm production on polystyrene by Listeria, Escherichia coli and Staphylococcus aureus isolated from a poultry slaughterhouse. Brazilian Journal of Microbiology, 41, 1082-1085.
  • Shi, X., & Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science and Technology, 20(9), 407-413.
  • Soni, K. A., & Nannapaneni, R. (2010). Removal of Listeria monocytogenes biofilms with bacteriophage P100. Journal of Food Protection, 73(8), 1519-1524.
  • Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukić, S., Ćirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis, 115(8), 891-899.
  • Tajbakhsh, E., Ahmadi, P., Abedpour-Dehkordi, E., Arbab-Soleimani, N., & Khamesipour, F. (2016). Biofilm formation, antimicrobial susceptibility, serogroups and virulence genes of uropathogenic E. coli isolated from clinical samples in Iran. Antimicrobial Resistance and Infection Control, 5(1), 1-8.
  • Thiran, E., Di Ciccio, P., Graber, H., Zanardi, E., Ianieri, A., & Hummerjohann, J. (2018). Biofilm formation of Staphylococcus aureus dairy isolates representing different genotypes. Journal of Dairy Science, 101(2), 1000-1012.
  • Uyanik, T. (2022). Samsun ilindeki hastane kantinlerinde satışa sunulan tüketime hazır sandviçlerde genişlemiş spektrumlu beta-laktamaz üreten Escherichia coli varlığının araştırılması. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 19(1), 37-42.
  • Var, I., & Sağlam, S. (2017). Biofilm Structure of foodborne pathogens. Antimicrobial Research: Novel bioknowledge and educational programs Microbiology Book Series, 6, 301-307.
  • Wang, Y., Yi, L., Wang, Y., Wang, Y., Cai, Y., Zhao, W., & Ding, C. (2016). Isolation, phylogenetic group, drug resistance, biofilm formation, and adherence genes of Escherichia coli from poultry in central China. Poultry Science, 95(12), 2895-2901.
  • Woo, J., & Ahn, J. (2013). Probiotic‐mediated competition, exclusion and displacement in biofilm formation by food‐borne pathogens. Letters in Applied Microbiology, 56(4), 307-313.
  • Zarzecka, U., Zadernowska, A., & Chajęcka-Wierzchowska, W. (2022). Effects of osmotic and high pressure stress on expression of virulence factors among Enterococcus spp. isolated from food of animal origin. Food Microbiology, 102, 103900.
  • Zhao, X., Zhao, F., Wang, J., & Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 7(58), 36670-36683.
  • Zheng, J.-x., Bai, B., Lin, Z.-w., Pu, Z.-y., Yao, W.-m., Chen, Z., Li, D.-y., Deng, X.-b., Deng, Q.-w., & Yu, Z.-j. (2018). Characterization of biofilm formation by Enterococcus faecalis isolates derived from urinary tract infections in China. Journal of Medical Microbiology, 67(1), 60.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Articles
Authors

Tolga Uyanık 0000-0002-3181-3878

Ayşegül Bölükbaş 0000-0002-5516-3689

Ali Gücükoğlu 0000-0002-8465-7768

Özgür Çadırcı 0000-0003-2018-2545

Publication Date December 31, 2022
Submission Date October 25, 2022
Acceptance Date December 13, 2022
Published in Issue Year 2022 Volume: 7 Issue: 3

Cite

APA Uyanık, T., Bölükbaş, A., Gücükoğlu, A., Çadırcı, Ö. (2022). Çeşitli gıda örnekleri ve kesimhanelerden izole edilen bazı patojen bakterilerin biyofilm oluşturma yeteneğinin araştırılması. Journal of Advances in VetBio Science and Techniques, 7(3), 338-345. https://doi.org/10.31797/vetbio.1194207

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download