Derleme
BibTex RIS Kaynak Göster

Bakteriyel Selülozların Üretimi ve Özellikleri ile Gıda ve Gıda Dışı Uygulamalarda Kullanımı

Yıl 2018, Cilt: 16 Sayı: 2, 241 - 251, 05.08.2018
https://doi.org/10.24323/akademik-gida.449633

Öz

Selüloz D-glukopiranoz birimlerinin
β-1,4 glikozidik bağlarla bağlanmasıyla oluşan lineer ve dünyada en yaygın
olarak bulunan polimerdir. Selüloz, bitkilerin yanında bazı bakteriler
tarafından da üretilmektedir. Bakteriyel selüloz olarak adlandırılan bu tip
selülozlar gıda, ilaç, biyoteknoloji, biyomedikal, kozmetik, kağıt ve
elektronik alanlarında kullanımı giderek artmaktadır. Saf olarak elde edilmesi,
elastik, ağsı yapıda, yüksek kristalizasyon derecesi, yüzey alanı, su tutma
kapasitesine ve gerilme direncine, daha ince ve gözenekli bir yapıya sahip
olması gibi bitkisel selüloza kıyasla pek çok üstün özellikleri bulunmaktadır.
Bu derleme bakteriyel selülozun üretimini,
üretiminde kullanılan yöntemleri, üretilen polimerin özelliklerini ve gıda ve
gıda dışı uygulamalarda kullanımını kapsamaktadır.

Kaynakça

  • [1] Ramírez, C.M., Castro, C., Zuluaga, R., Gañán, P. ((2018)). Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by products as alternative low cost feedstocks. Journal of Polymers and the Environment, 26, 830-837.
  • [2] Lestari, P., Elfrida, N., Suryani, A., Suryadi, Y. ((2014)). Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan Journal of Biological Sciences, 7(1), 75-80.
  • [3] Perez, S., Samain, D. (2010). Structure and engineering of celluloses. Advances in Carbohydrate Chemistry and Biochemistry, 64, 25-116.
  • [4] Singhsa, P., Narain, R., Manuspiya, H. (2018). Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25, 1571-1581
  • [5] Lin, K.W., Lin, H.Y. (2004). Quality characteristics of Chinese-style meatball containing bacterial cellulose (Nata). Journal of Food Science, 69(3), 107-111.
  • [6] Stephens, S.R., Westland, J.A., Neogi, A.N. (1990). Method of using bacterial cellulose as a dietary fiber component. US patent 4960763.
  • [7] Shi, Z., Zhang, Y., Phillips, G.O., Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545.
  • [8] Ng, C., Sheu, F., Wang, C., Shyu, Y. (2004). Fermentation of Monascus purpureus on agri-by-products to make colorful and functional bacterial cellulose (NATA). Microbiology Indonesia, 4(1), 6-10.
  • [9] Shah, N., Ul-Islama, M., Khattaka, W.A., Parka, J.K. (2013). Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydrate Polymers, 98, 1585-1598.
  • [10] Çakar, F., Özer, İ., Aytekin, A.O., Şahin, F. (2014). Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydrate Polymers, 106, 7-13.
  • [11] Gunduz, G., Kiziltas, E.E., Kiziltas, A., Gencer, A., Aydemir, D., Asik, N. (2018). Production of bacterial cellulose fibers in the presence of effective microorganism. Journal of Natural Fibers, DOI: 10.1080/15440478.2018.1428847.
  • [12] Brock, T.D., Madigan, M.T. (1994). Biology of Microorganisms, Seventh Edition, pp. 899, Prenice-Hall International Inc., New Jersey.
  • [13] Sutherland, I.W. (1994). Structure-function relationship in microbial exopolysaccharides. Biotechnology Advances, 12, 393-448.
  • [14] Sutherland, I.W. (1998). Novel and established applications of microbial polysaccharides. Trends in Biotechnology, 16, 41-46.
  • [15] Kılıç, S., (2001). Süt Endüstrisinde Laktik Asit Bakterileri. Ege Üniversitesi, Ziraat Fakültesi Süt Teknolojisi Bölümü, 1. Basım, 193-194s., İzmir.
  • [16] Reiniati, I., Hrymak, A.N., Margaritis, A. (2017). Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Critical Reviews in Biotechnology, 37(4), 510-524.
  • [17] Crescenzi, V., Dentini, M., Coviello, T. (1991). Solution and gelling properties of polysaccharides. Polyelectroytes, 41, 61-71.
  • [18] Lin, C.C., Cassida, L.E., Jr. Lin, C.C., Cassida Jr, L.E. (1984). Gelrite as a gelling agent for the growth of thermophilic microorganisms. Applied Environmental Microbiology, 47, 427-429.
  • [19] Ravella, S.R., Quinones, T.S.R., Retter, A., Heiermann, M., Amon, T., Hobbs, P.J. (2010). Extracellular polysaccharide (EPS) production by a novel strain of yeast-like fungus Aureobasidium pullulans. Carbohydrate Polymers, 82(3), 728-732.
  • [20] Ahmad, N.H., Shuhaimi M., Man, Y.B.C., (2015). Microbial polysaccharides and their modification approaches: a review. International Journal of Food Properties 18: 332-347.
  • [21] Huang, H.C., Chen, L.C., Lin, S.B., Hsu, C.P., Chen, H.H., (2010). In situ modification of BC network structure by adding interfering substances during fermentation. Bioresource Technology 101: 6084–6091.
  • [22] Chouly, C., Colquhoun, I.J., Jodele, A., 1995. NMR studies of succinoglycan repeating-unit octasaccharides from Rhizobium meliloti and Agrobacterium radiobacter. International Journal of Biological Macromolecules 17(6): 357-363.
  • [23] Kaneda, I., Kobayashi, A., Miyazawa, K., Yanaki, T., (2002). Double helix of Agrobacterium tumefaciens succinoglycan in dilute solution. Polymers 43: 1301-1305.
  • [24] Béjar, V., Llamas, I., Calvo, C., Quesada, E., 1998. Characterization of exopolysaccharides prod uced by 19 halophilic strains of the species Halomonas eurihalina. Journal of Biotechnology 61: 135-141.
  • [25] Bekers, M., Upite, D., Kaminska, E., Laukevics, J., Grube, M., Vigants, A., Linde, R., (2005). Stability of levan produced by Zymomonas mobilis. Process Biochemistry 40: 1535-1539.
  • [26] Majumder, A., Goyal, A., (2009). Rheological and gelling properties of novel glucan from Leuconostoc dextranicum NRRL B-1146. Food Research International 42: 525–528.
  • [27] Falconer, D.J., Mukerjea, R., Robyt, J.F., (2011). Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohydrate Polymers 364: 280–284.
  • [28] Schürks, N., Wingender, J., Flemming, H., Mayer, C., (2002). Monomer composition and sequence of alginates from Pseudomonas aeruginosa. International Journal of Biological Macromolecules 30: 105-111.
  • [29] Çelik, G.Y., Aslım, B., Beyatlı, Y., (2008). Characterization and production of the exopolysaccharide (EPS) from Pseudomonas aeruginosa G1 and Pseudomonas putida G12 strains. Carbohydrate Polymers 73: 178-182.
  • [30] Gonçalves, V.M.F., Reis, A., Domingues, M.R.M., Lopes-da-Silva, J.A., Fialho, A.M., Moreira, L.M., Sá-Correia, I., Coimbra, M.A., (2009). Structural analysis of gellans produced by Sphingomonas elodea strains by electrospray tandem mass spectrometry. Carbohydrate Polymers 77: 10-19.
  • [31] Wu, X.C., Chen, Y.M., Li, Y.D., Li, O., Zhu, L., Qian, C.D., Tao, X.L., Teng, Y., (2011). Constitutive expression of vitreoscilla haemoglobin in sphingomonas elodea to improve gellan gum production. Journal of Applied Microbiology 110: 422-430.
  • [32] Sanderson, G.R., 1982. The interactions of xantham gum in food systems. Progress in Food and Nutrition Science 6: 77–87.
  • [33] Brown, R.M.J., Saxena, I.M. (2007). Cellulose: Molecular and structural biology, Springer, ISBN 978-1-4020-5332-0, New York, NY.
  • [34] Li, Z., Wanga, L., Hua, J., Jia S., Zhang, J., Liu, H. (2015). Production of nano bacterial cellulose from waste water of candiedjujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers, 120, 115-119
  • [35] Brown, E.E. (2007). Bacterial Cellulose/Thermoplastic Polymer Nanocomposites. Master Of Science In Chemical Engineering, Washington State University, Department of Chemical Engineering, USA.
  • [36] Bielecki, S., Krystynowicz, A.,Turkiewicz, M., Kalinowska, H. (2000). Bacterial Cellulose. In: Steinbuchel A (Ed), Biopolymers: Polysaccharides I., Vol.7, pp. 37-90. Wiley-VCH Verlag GmbH, Munster, Germany.
  • [37] Iguchi, M., Yamanaka, S., Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature’s arts. Journal of Materials Science, 35, 261-270.
  • [38] Ross, P., Mayer, R., Benziman, M. (1991). Cellulose biosynthesis and function ın bacteria. Microbiological Reviews, 55(1), 35-58.
  • [39] Araújo, I.M.S., Silva, R.R., Pacheco, G., Lustri, W.R., Tercjak, A., Gutierrez, J., Júnior, J.R.S., Azevedo, F.H.C., Figuêredo, G.S., Vega, M.L., Ribeiro, S.J.L., Barudc, H.S. (2018). Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydrate Polymers, 179, 341-349.
  • [40] Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., Shchankin, M. (2018). Cost-effective production of bacterial celluloseusing acidic food industry by-products. Brazilian Journal of Microbiology, https://doi.org/10.1016/j.bjm.2017.12.012.
  • [41] Lin, D., Sanchez, P.L., Li, R., Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology, 151, 113-119.
  • [42] Johnson, D.C., Neogi, A.N. (1989). Sheeted products formed from reticulated microbial cellulose. US Patent, 4863565.
  • [43] Chawla, P.R., Bajaj, I.B., Survase, S.A., Singhal, R.S. (2009). Microbial cellulose: fermentative production and applications. Food Technology Biotechnology, 47(2), 107-124.
  • [44] Gayathry, G., Gopalaswamy, G. (2014). Production and characterization of microbial cellulosic fibre from Acetobacter xylinum. Indian Journal of Fibre and Textile Research, 39, 93-96.
  • [45] Dahman, Y. (2009). Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. Journal of Nanoscience and Nanotechnology, 9, 5105-5122.
  • [46] Maria, L.C.S., Santos, A.L.C., Oliveira, P.C., Valle, A.S.S. (2010). Preparation and antibacterial activity of silver nanoparticles Impregnated in bacterial cellulose. Polímeros: Ciência e Tecnologia, 20, 72-77.
  • [47] Jonas, R., Farah, L.F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59, 101-106.
  • [48] Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K., De Wulf P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59(7), 93-99.
  • [49] Kontturi, E., Tammelin, T., Osterberg, M. (2006). Cellulose-model films and the fundamental approach. Chemical Society Reviews, 35(12), 1287-1304.
  • [50] Keshk, S.M. (2014). Bacterial cellulose production and its industrial applications. Bioprocessing & Biotechniques, 4(2), 1-10.
  • [51] Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., Sun, D. (2014). Recent advances in bacterial cellulose. Cellulose, 21(1), 1-30.
  • [52] Römling, U., Galperin, M.Y. (2015). Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends in Microbiology, 23(9), 545-557.
  • [53] Uzyol, H. K., Saçan, M.T. (2016). Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environmental Science and Pollution Research, 24(12), 11154-11162.
  • [54] Güzel, M., Akpınar, Ö. (2017). Komagataeibacter hansenii GA2016 ile bakteriyel selüloz üretimi ve karakterizasyonu. Gıda, 42(5), 620-633.
  • [55] Yamada, Y. (2000). Transfer of Acetobacter oboediens and Acetobacter intermedius to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 2225-2227.
  • [56] Kawee, N., Lam, N.T., Sukya, P. (2018). Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization. Carbohydrate Polymers, 179, 394-401.
  • [57] Ramana, K., Tomar, A., Singh, L. (2000). Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World Journal of Microbiology and Biotechnology, 16(3), 245-248.
  • [58] Qiu, K., Netravali, A.N. (2014). A review of fabrication and applications of bacterial cellulose based nanocomposites. Polymer Reviews, 54(4), 598-626.
  • [59] Güzel, M., Akpınar, Ö. (2018). Production and characterization of bacterial cellulose from citrus peels. Waste and Biomass Valorization, DOI 10.1007/s12649-018-0241-x.
  • [60] Carreira, P., Mendes, J.A., Trovatti, E., Serafim, L.S., Freire, C.S., Silvestre, A.J., Neto, C.P. (2011). Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology, 102, 7354-7360.
  • [61] Uraki, Y., Morito, M., Kishimoto, T., Sano, Y. (2002). Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping. Holzforschung, 56, 341–347.
  • [62] Bae, S., Shoda, M. (2005). Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Applied Microbiology and Biotechnology, 67, 45–51.
  • [63] Hungund, B., Prabhu, S., Shetty, C., Acharya, S., Prabhu, V. (2013). Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. Journal of Microbial and Biochemical Technology, 5, 31-33.
  • [64] Hong, F., Qiu, K. (2008). An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydrate Polymers, 72, 545-549.
  • [65] Goelzer, F., Faria-Tischer, P., Vitorino, J., Sierakowski, M.R., Tischer, C. (2009). Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Materials Science and Engineering, 29, 546-551.
  • [66] Chen, L., Hong, F., Yang, X.X. ve Han, S.F. (2012). Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresource Technology, 135, 464-468.
  • [67] Hong, F., Guo, X., Zhang, S., Han, S.F., Yang, G., Jönsson, L.J. (2012). Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technology, 104, 503-508.
  • [68] Zeng, X., Small, D.P., Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85, 506-513.
  • [69] Usha, R.M., Appaiah, K.A. (2011). Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract—an agro-industry waste. Journal of Microbial and Biochemical Technology, 21, 739-745.
  • [70] Gomes, F.P., Silva, N.H., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J., Neto, C.P., Freire C.S. (2013). Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy, 55, 205-211.
  • [71] Mohammadkazemi, F., Azin, M., Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518-523.
  • [72] Kızıltaş, E.E., Kızıltaş, A., Gardner, D.J. (2015). Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydrate Polymers, 124, 131-138.
  • [73] Hwang, J.W., Yang, Y.K., Hwang, J.K., Pyun, Y.R., Kim, Y.S. (1999). Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. Journal of Bioscience and Bioengineering, 88, 183-188.
  • [74] Jung, J.Y., Park, J.K., Chang, H.N. (2005). Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme and Microbial Technology, 37, 347-354.
  • [75] Park, J.K., Jung, J.Y., Park, Y.H. (2003). Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnology Letters, 25, 2055-2059.
  • [76] Son, H.J., Kim, H.G., Kim, K.K., Kim, H.S., Kim, Y.G., Lee, S.J. (2003). Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresource Technology, 86, 215-219.
  • [77] Son, H.J., Heo, M.S., Kim, Y.G., Lee, S.J. (2001). Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Applied Biochemistry and Biotechnology, 33, 1-5.
  • [78] Bae, S., Shoda, M. (2004). Bacterial cellulose production by fed- -batch fermentation in molasses medium. Biotechnology Progress, 20, 1366-1371.
  • [79] Bae, S., Sugano, Y., Shoda, M. (2004). Improvement of bacterial cellulose production by addition of agar in a jar fermentor. Journal of Bioscience and Bioengineering, 97, 33-38.
  • [80] Chao, Y., Ishida, T., Sugano, Y., Shoda, M. (2000). Bacterial cellulose production by Acetobacter xylinum in a 50L internal-loop airlift reactor. Biotechnology and Bioengineering, 68, 345-352.
  • [81] Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Mioekiewicz, M., Turkiewicz, M., Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, 29, 189-195.
  • [82] Nguyen, V.Y., Flanagan, B., Gidley, M.J., Dykes, G.A. (2008). Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Current Microbiology, 57, 449-453.
  • [83] Keshk, S., Sameshima, K. (2006). Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme and Microbial Technology, 40(1), 4-8.
  • [84] Zhou, L.L., Sun, D.P., Hu, L.Y., Li, Y.W., Yang, J.Z. (2007). Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. Journal of Industrial Microbiology and Biotechnology, 34, 483-489.
  • [85] Jahan, F., Kumar, V., Saxena, R.K. (2018). Distillery effluent as a potential medium for bacterial cellulose production: A biopolymer of great commercial importance. Bioresource Technology, 250, 922-926.
  • [86] Kim, S.Y., Kim, J.N., Wee, Y.J., Park, D.H., Ryu, H.W. (2006). Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Applied Biochemical Biotechnology, 13, 705-715.
  • [87] Seto, A., Saito, Y., Matsushige, M., Kobayashi, H., Sasaki, Y., Tonouchi, N., Tsuchida, T., Yoshinaga, F., Ueda, K., Beppu, T. (2006). Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Applied Microbiology and Biotechnology, 73, 915-921.
  • [88] Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., Yoshinaga, F. (1996). A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. Sucrofermentans. Bioscience, Biotechnology, and Biochemistry, 60, 575-579.
  • [89] Oikawa, T., Ohtori, T., Ameyama, M. (1995). Production of cellulose from D-mannitol by Acetobacter xylinum KU-1. Bioscience, Biotechnology, and Biochemistry, 59, 331-332.
  • [90] Mikkelsen, D., Flanagan, B., Dykes, G., Gidley, M. (2009). Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology, 107, 576-583.
  • [91] Dayal, M. S., Goswami, N., Sahai, A., Jain, V., Mathur, G., Mathur, A. (2013). Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623, Carbohydrate Polymers, 94, 12-16.
  • [92] Ha, J.H., Shehzad, O., Khan, S., Lee, S.Y., Park, J.W., Khan, T., Park, J.K. (2008). Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean Journal of Chemical Engineering, 25, 812-815.
  • [93] Mohite, B.V., Patil, S.V. (2014). Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydate Polymers, 106, 132-141.
  • [94] Hungund, B.S., Gupta, S.G. (2010). Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2, Journal of Microbial and Biochemical Technology, 2, 127-133.
  • [95] Cannon, R.E., Anderson, S.M. (1991). Biogenesis of bacterial cellulose. Critical Reviews in Microbiology, 17(6), 435-447.
  • [96] Hu, Y., Catchmark, J. M. (2010). Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules, 11, 1727-1734.
  • [97] Kim, J.Y., Kim, J.N., Wee, Y.J., Park, D.H., Ryu, H.W. (2007). Bacterial cellulose production by Gluconacetobacter sp. RKY5 in a rotary biofilm contactor. Applied Biochemistry and Biotechnology, 137, 529-537.
  • [98] Jung, J.Y., Khan, T., Park, J.K., Chang, H.N. (2007). Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean Journal of Chemical Engineering, 24, 265-271.
  • [99] Yoshino, T., Asakura, T., Toda, K. (1996). Cellulose production by Acetobacter pasteurianus on silicone membrane. Journal of Fermentation and Bioengineering, 81, 32-36.
  • [100] Hornung, M., Ludwig, M., Gerrard, A.M., Schmauder, H.P. (2006). Optimizing the production of bacterial cellulose in surface culture: Evaluation of substrate mass transfer influences on the bioreaction (Part 1). Engineering in Life Sciences, 6, 537-545.
  • [101] Kongruang, S. (2008). Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Applied Biochemistry and Biotechnology, 148, 245-256.
  • [102] Bielecki, S., Krystynowicz, A., Turkiewicz, M., Kalinowska, H. (2005). Bacterial Cellulose. In: Polysaccharides and Polyamides in the Food Industry, A. Steinbüchel, S.K. Rhee (Eds.), Wiley-VCH Verlag, Weinheim, Germany, pp. 31–85.
  • [103] Sakairi, N., Asano, H., Ogawa, M., Nishi, N., Tokura, S. (1998). A method for direct harvest of bacterial cellulose filaments during continuous cultivation of Acetobacter xylinum. Carbohydrate Polymers, 35, 233-237.
  • [104] Cho, S., Almeida, N. (2012). Dietary fiber and health. CRC Press, 557p, Florida, USA.
  • [105] Mesomya, W., Pakpeankitvatana, V., Komindr, S., Leelahakul, P., Cuptapun, Y., Hengsawadi, D., Tammarate, P., Tangkanakul, P., (2006). Effects of health food from cereal and nata de coco on serum lipids in human songklanakarin. Journal of Science Technology, 28(1), 23-28.
  • [106] Ogawa, R., Tokura S. (1992). Preparation of bacterial cellulose containing N-acetylglucosamine residues. Carbohydrate Polymers, 19, 171-178.
  • [107] David, N.S. (1996). Chemical modification of lignocellulosic materials: Chemical structures of cellulose, hemicelluloses and lignin, Marcel Dekker. Inc., New York, USA.
  • [108] Ng, C., Shyu, Y.T. (2004). Development and production of cholesterol-lowering Monascus-nata complex. World Journal of Microbiology and Biotechnology, 20, 875-879.
  • [109] Jzlová, P., Martinkova, L., Ken, V. (1996). Secondary metabolites of the fungus Monascus: a review. Journal of Industrial Microbiology & Biotechnology, 16(3), 163-170.
  • [110] Purwadaria, T., Gunawan, L., Gunawan, A.W. (2010). The production of nata colored by Monascus purpureus J1 pigments as functional food. Microbiology Indonesia, 4(1), 6-10.
  • [111] Okiyama, A., Motoki, M., Yamanaka, S. (1992). Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocolloids, 6(5), 479-487.
  • [112] Okiyama, A., Motoki, M., Yamanaka, S. (1993). Bacterial cellulose IV. Application to processed foods. Food Hydrocolloids, 6(6), 503-511.
  • [113] Lin, S.B., Chen, L.C., Chen, H.H. (2011). Physical characteristics of surimi and bacterial cellulose composite gel. Journal of Food Process Engineering, 34, 1363-1379.
  • [114] Çakmakçı, M.L., Karahan, A.G., Çakır, İ., Gündoğdu, A., Akoğlu, A. (2008). Selüloz üretiminde kullanılacak mikroorganizmaların izolasyonu, moleküler tanısı ve mikrobiyel selülozun gıda sanayinde kullanım olanaklarının araştırılması. TÜBİTAK TOVAG 105O156 nolu proje raporu.
  • [115] Gao, C., Yan, T., Du, J., He, F., Luo, H., Wan, Y. (2014). Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε-polylysine nanocoatings. Food Hydrocolloids, 36, 204-211.
  • [116] Tome, L.C., Brandão, L., Mendes, A.M., Silvestre, A.J., Neto, C.P., Gandini, A. (2010). Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose, 17(6), 1203-1211.
  • [117] Xiao, L., Mai, Y., He, F., Yu, L., Zhang, L., Tang, H. (2012). Bio-based green composites with high performance from poly (lactic acid) and surfacemodified microcrystalline cellulose. Journal of Materials Chemistry, 22(31), 15732-15739.
  • [118] Nguyen, V.T., Gidley, M.J., Dykes, G.A. (2008). Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiology, 25, 471-478.
  • [119] Maneerung, T., Tokura, S., Rujiravanit, R. (2008). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 72(1), 43-51.
  • [120] Sureshkumar, M., Siswanto, D. Y., Lee, C. (2010). Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. Journal of Materials Chemistry, 20(33), 6948-6955.
  • [121] Iguchi, M., Mitsuhashi, S., Ichimura, K. (1988). Bacterial cellulose-containing molding material having high dynamic strength. US Patent 4,742,164.
  • [122] Krystynowicz, A., Czaja, W., Bielecki, S. (1999). Biosynthesis and application of bacterial cellulose. Zywnosc, 3, 22-33.
  • [123] Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S. (1990). The structure and mechanical properties of sheets prepared from bacterial cellulose. Part II Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. Journal of Materials Science, 25, 2997-3001.
  • [124] Shah, J., Brown, R.M. (2005). Towards electronic displays made from microbial cellulose. Applied Microbiology and Biotechnology, 66(4), 352-355.
  • [125] Halib, N., Amin, M.C.I., Ahmad, I., Hashim, Z., Jamal, N. (2009). Swelling of bacterial cellulose-acrylic acid hydrogels: sensitivity towards external stimuli. Sains Malaysiana, 38(5), 785-791.
  • [126] Halib, N., Amin, M.C.I., Ahmad, I. (2010). Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite. Journal of Applied Polymer Science, 116, 2920-2929.
  • [127] Fontana, J.D., de Souza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti, B.J., de Souza, S.J., Narcisco, G.P., Bichara, J.A., Farah, L.F.X. (1990). Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology, 24, 253-264.
  • [128] Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 27, 2141-2149.
  • [129] Charpentier, P.A., Maguire, A., Wan, W.K. (2006). Surface modification of polyester to produce bacterial cellulose-based vascular prosthetic device. Applied Surface Science, 252, 6360-6367.
  • [130] Krystynowicz, A., Turkiewicz, M., Drynska, E., Galas, E. (1995). Bacterial cellulose biosynthesis and application. Biotechnologia, 30, 120-132.
  • [131] Krystynowicz, A., Czaja, W., Pomorski, L., Kolodziejczyk, M., Bielecki, S. (2000). The evalution of usefulness of microbial cellulose as a wound dressing material. 14th Forum for Applied Biotechnology, 27-28 September 2000, Gent, Belgium.
  • [132] Yamanaka, S., Watanabe, K., Suzuki, Y. (1990). Hollow microbial cellulose, process for preparation thereof, and artificial blood vessel formed of said cellulose. European patent 0396344A2.
  • [133] Klemm, D., Schumann, U., Udhardt, U., Marsch, S. (2001). Bacterial synthesized cellulose - artificial blood vessels for microsurgery. Progress in Polymer Science, 26(9), 1561-1599.
  • [134] Haimer, E., Wendland, M., Schlufter, K., Frankenfeld, K., Miethe, P., Potthast, A., Rosenau, T., Liebner, F. (2010). Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromolecular Symposia, 294(2), 64-74.

Production and Properties Bacterial Celluloses and Their Use in Food and Non-Food Applications

Yıl 2018, Cilt: 16 Sayı: 2, 241 - 251, 05.08.2018
https://doi.org/10.24323/akademik-gida.449633

Öz

Cellulose is the most common polymer in the world,
formed by β-1,4 linked glucopyranose units.
Besides plants, celluloses can be produced by some bacteria. The uses of these bacterial celluloses have been increasing in food,
pharmaceutical, biotechnology, biomedical, cosmetics, paper and electronics areas.
It has many superior properties compared to plant celluloses, such as purity,
elasticity, network structure, high crystallize, surface area, water
holding capacity and tensile strength, thinner and porous structure. This
review includes the production methods for bacterial celluloses, the properties
of these polymers and their use in food and non-food applications.

Kaynakça

  • [1] Ramírez, C.M., Castro, C., Zuluaga, R., Gañán, P. ((2018)). Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by products as alternative low cost feedstocks. Journal of Polymers and the Environment, 26, 830-837.
  • [2] Lestari, P., Elfrida, N., Suryani, A., Suryadi, Y. ((2014)). Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan Journal of Biological Sciences, 7(1), 75-80.
  • [3] Perez, S., Samain, D. (2010). Structure and engineering of celluloses. Advances in Carbohydrate Chemistry and Biochemistry, 64, 25-116.
  • [4] Singhsa, P., Narain, R., Manuspiya, H. (2018). Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25, 1571-1581
  • [5] Lin, K.W., Lin, H.Y. (2004). Quality characteristics of Chinese-style meatball containing bacterial cellulose (Nata). Journal of Food Science, 69(3), 107-111.
  • [6] Stephens, S.R., Westland, J.A., Neogi, A.N. (1990). Method of using bacterial cellulose as a dietary fiber component. US patent 4960763.
  • [7] Shi, Z., Zhang, Y., Phillips, G.O., Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545.
  • [8] Ng, C., Sheu, F., Wang, C., Shyu, Y. (2004). Fermentation of Monascus purpureus on agri-by-products to make colorful and functional bacterial cellulose (NATA). Microbiology Indonesia, 4(1), 6-10.
  • [9] Shah, N., Ul-Islama, M., Khattaka, W.A., Parka, J.K. (2013). Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydrate Polymers, 98, 1585-1598.
  • [10] Çakar, F., Özer, İ., Aytekin, A.O., Şahin, F. (2014). Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydrate Polymers, 106, 7-13.
  • [11] Gunduz, G., Kiziltas, E.E., Kiziltas, A., Gencer, A., Aydemir, D., Asik, N. (2018). Production of bacterial cellulose fibers in the presence of effective microorganism. Journal of Natural Fibers, DOI: 10.1080/15440478.2018.1428847.
  • [12] Brock, T.D., Madigan, M.T. (1994). Biology of Microorganisms, Seventh Edition, pp. 899, Prenice-Hall International Inc., New Jersey.
  • [13] Sutherland, I.W. (1994). Structure-function relationship in microbial exopolysaccharides. Biotechnology Advances, 12, 393-448.
  • [14] Sutherland, I.W. (1998). Novel and established applications of microbial polysaccharides. Trends in Biotechnology, 16, 41-46.
  • [15] Kılıç, S., (2001). Süt Endüstrisinde Laktik Asit Bakterileri. Ege Üniversitesi, Ziraat Fakültesi Süt Teknolojisi Bölümü, 1. Basım, 193-194s., İzmir.
  • [16] Reiniati, I., Hrymak, A.N., Margaritis, A. (2017). Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Critical Reviews in Biotechnology, 37(4), 510-524.
  • [17] Crescenzi, V., Dentini, M., Coviello, T. (1991). Solution and gelling properties of polysaccharides. Polyelectroytes, 41, 61-71.
  • [18] Lin, C.C., Cassida, L.E., Jr. Lin, C.C., Cassida Jr, L.E. (1984). Gelrite as a gelling agent for the growth of thermophilic microorganisms. Applied Environmental Microbiology, 47, 427-429.
  • [19] Ravella, S.R., Quinones, T.S.R., Retter, A., Heiermann, M., Amon, T., Hobbs, P.J. (2010). Extracellular polysaccharide (EPS) production by a novel strain of yeast-like fungus Aureobasidium pullulans. Carbohydrate Polymers, 82(3), 728-732.
  • [20] Ahmad, N.H., Shuhaimi M., Man, Y.B.C., (2015). Microbial polysaccharides and their modification approaches: a review. International Journal of Food Properties 18: 332-347.
  • [21] Huang, H.C., Chen, L.C., Lin, S.B., Hsu, C.P., Chen, H.H., (2010). In situ modification of BC network structure by adding interfering substances during fermentation. Bioresource Technology 101: 6084–6091.
  • [22] Chouly, C., Colquhoun, I.J., Jodele, A., 1995. NMR studies of succinoglycan repeating-unit octasaccharides from Rhizobium meliloti and Agrobacterium radiobacter. International Journal of Biological Macromolecules 17(6): 357-363.
  • [23] Kaneda, I., Kobayashi, A., Miyazawa, K., Yanaki, T., (2002). Double helix of Agrobacterium tumefaciens succinoglycan in dilute solution. Polymers 43: 1301-1305.
  • [24] Béjar, V., Llamas, I., Calvo, C., Quesada, E., 1998. Characterization of exopolysaccharides prod uced by 19 halophilic strains of the species Halomonas eurihalina. Journal of Biotechnology 61: 135-141.
  • [25] Bekers, M., Upite, D., Kaminska, E., Laukevics, J., Grube, M., Vigants, A., Linde, R., (2005). Stability of levan produced by Zymomonas mobilis. Process Biochemistry 40: 1535-1539.
  • [26] Majumder, A., Goyal, A., (2009). Rheological and gelling properties of novel glucan from Leuconostoc dextranicum NRRL B-1146. Food Research International 42: 525–528.
  • [27] Falconer, D.J., Mukerjea, R., Robyt, J.F., (2011). Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohydrate Polymers 364: 280–284.
  • [28] Schürks, N., Wingender, J., Flemming, H., Mayer, C., (2002). Monomer composition and sequence of alginates from Pseudomonas aeruginosa. International Journal of Biological Macromolecules 30: 105-111.
  • [29] Çelik, G.Y., Aslım, B., Beyatlı, Y., (2008). Characterization and production of the exopolysaccharide (EPS) from Pseudomonas aeruginosa G1 and Pseudomonas putida G12 strains. Carbohydrate Polymers 73: 178-182.
  • [30] Gonçalves, V.M.F., Reis, A., Domingues, M.R.M., Lopes-da-Silva, J.A., Fialho, A.M., Moreira, L.M., Sá-Correia, I., Coimbra, M.A., (2009). Structural analysis of gellans produced by Sphingomonas elodea strains by electrospray tandem mass spectrometry. Carbohydrate Polymers 77: 10-19.
  • [31] Wu, X.C., Chen, Y.M., Li, Y.D., Li, O., Zhu, L., Qian, C.D., Tao, X.L., Teng, Y., (2011). Constitutive expression of vitreoscilla haemoglobin in sphingomonas elodea to improve gellan gum production. Journal of Applied Microbiology 110: 422-430.
  • [32] Sanderson, G.R., 1982. The interactions of xantham gum in food systems. Progress in Food and Nutrition Science 6: 77–87.
  • [33] Brown, R.M.J., Saxena, I.M. (2007). Cellulose: Molecular and structural biology, Springer, ISBN 978-1-4020-5332-0, New York, NY.
  • [34] Li, Z., Wanga, L., Hua, J., Jia S., Zhang, J., Liu, H. (2015). Production of nano bacterial cellulose from waste water of candiedjujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers, 120, 115-119
  • [35] Brown, E.E. (2007). Bacterial Cellulose/Thermoplastic Polymer Nanocomposites. Master Of Science In Chemical Engineering, Washington State University, Department of Chemical Engineering, USA.
  • [36] Bielecki, S., Krystynowicz, A.,Turkiewicz, M., Kalinowska, H. (2000). Bacterial Cellulose. In: Steinbuchel A (Ed), Biopolymers: Polysaccharides I., Vol.7, pp. 37-90. Wiley-VCH Verlag GmbH, Munster, Germany.
  • [37] Iguchi, M., Yamanaka, S., Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature’s arts. Journal of Materials Science, 35, 261-270.
  • [38] Ross, P., Mayer, R., Benziman, M. (1991). Cellulose biosynthesis and function ın bacteria. Microbiological Reviews, 55(1), 35-58.
  • [39] Araújo, I.M.S., Silva, R.R., Pacheco, G., Lustri, W.R., Tercjak, A., Gutierrez, J., Júnior, J.R.S., Azevedo, F.H.C., Figuêredo, G.S., Vega, M.L., Ribeiro, S.J.L., Barudc, H.S. (2018). Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydrate Polymers, 179, 341-349.
  • [40] Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., Shchankin, M. (2018). Cost-effective production of bacterial celluloseusing acidic food industry by-products. Brazilian Journal of Microbiology, https://doi.org/10.1016/j.bjm.2017.12.012.
  • [41] Lin, D., Sanchez, P.L., Li, R., Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology, 151, 113-119.
  • [42] Johnson, D.C., Neogi, A.N. (1989). Sheeted products formed from reticulated microbial cellulose. US Patent, 4863565.
  • [43] Chawla, P.R., Bajaj, I.B., Survase, S.A., Singhal, R.S. (2009). Microbial cellulose: fermentative production and applications. Food Technology Biotechnology, 47(2), 107-124.
  • [44] Gayathry, G., Gopalaswamy, G. (2014). Production and characterization of microbial cellulosic fibre from Acetobacter xylinum. Indian Journal of Fibre and Textile Research, 39, 93-96.
  • [45] Dahman, Y. (2009). Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. Journal of Nanoscience and Nanotechnology, 9, 5105-5122.
  • [46] Maria, L.C.S., Santos, A.L.C., Oliveira, P.C., Valle, A.S.S. (2010). Preparation and antibacterial activity of silver nanoparticles Impregnated in bacterial cellulose. Polímeros: Ciência e Tecnologia, 20, 72-77.
  • [47] Jonas, R., Farah, L.F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59, 101-106.
  • [48] Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K., De Wulf P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59(7), 93-99.
  • [49] Kontturi, E., Tammelin, T., Osterberg, M. (2006). Cellulose-model films and the fundamental approach. Chemical Society Reviews, 35(12), 1287-1304.
  • [50] Keshk, S.M. (2014). Bacterial cellulose production and its industrial applications. Bioprocessing & Biotechniques, 4(2), 1-10.
  • [51] Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., Sun, D. (2014). Recent advances in bacterial cellulose. Cellulose, 21(1), 1-30.
  • [52] Römling, U., Galperin, M.Y. (2015). Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends in Microbiology, 23(9), 545-557.
  • [53] Uzyol, H. K., Saçan, M.T. (2016). Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environmental Science and Pollution Research, 24(12), 11154-11162.
  • [54] Güzel, M., Akpınar, Ö. (2017). Komagataeibacter hansenii GA2016 ile bakteriyel selüloz üretimi ve karakterizasyonu. Gıda, 42(5), 620-633.
  • [55] Yamada, Y. (2000). Transfer of Acetobacter oboediens and Acetobacter intermedius to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 2225-2227.
  • [56] Kawee, N., Lam, N.T., Sukya, P. (2018). Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization. Carbohydrate Polymers, 179, 394-401.
  • [57] Ramana, K., Tomar, A., Singh, L. (2000). Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World Journal of Microbiology and Biotechnology, 16(3), 245-248.
  • [58] Qiu, K., Netravali, A.N. (2014). A review of fabrication and applications of bacterial cellulose based nanocomposites. Polymer Reviews, 54(4), 598-626.
  • [59] Güzel, M., Akpınar, Ö. (2018). Production and characterization of bacterial cellulose from citrus peels. Waste and Biomass Valorization, DOI 10.1007/s12649-018-0241-x.
  • [60] Carreira, P., Mendes, J.A., Trovatti, E., Serafim, L.S., Freire, C.S., Silvestre, A.J., Neto, C.P. (2011). Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology, 102, 7354-7360.
  • [61] Uraki, Y., Morito, M., Kishimoto, T., Sano, Y. (2002). Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping. Holzforschung, 56, 341–347.
  • [62] Bae, S., Shoda, M. (2005). Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Applied Microbiology and Biotechnology, 67, 45–51.
  • [63] Hungund, B., Prabhu, S., Shetty, C., Acharya, S., Prabhu, V. (2013). Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. Journal of Microbial and Biochemical Technology, 5, 31-33.
  • [64] Hong, F., Qiu, K. (2008). An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydrate Polymers, 72, 545-549.
  • [65] Goelzer, F., Faria-Tischer, P., Vitorino, J., Sierakowski, M.R., Tischer, C. (2009). Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Materials Science and Engineering, 29, 546-551.
  • [66] Chen, L., Hong, F., Yang, X.X. ve Han, S.F. (2012). Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresource Technology, 135, 464-468.
  • [67] Hong, F., Guo, X., Zhang, S., Han, S.F., Yang, G., Jönsson, L.J. (2012). Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technology, 104, 503-508.
  • [68] Zeng, X., Small, D.P., Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85, 506-513.
  • [69] Usha, R.M., Appaiah, K.A. (2011). Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract—an agro-industry waste. Journal of Microbial and Biochemical Technology, 21, 739-745.
  • [70] Gomes, F.P., Silva, N.H., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J., Neto, C.P., Freire C.S. (2013). Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy, 55, 205-211.
  • [71] Mohammadkazemi, F., Azin, M., Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518-523.
  • [72] Kızıltaş, E.E., Kızıltaş, A., Gardner, D.J. (2015). Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydrate Polymers, 124, 131-138.
  • [73] Hwang, J.W., Yang, Y.K., Hwang, J.K., Pyun, Y.R., Kim, Y.S. (1999). Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. Journal of Bioscience and Bioengineering, 88, 183-188.
  • [74] Jung, J.Y., Park, J.K., Chang, H.N. (2005). Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme and Microbial Technology, 37, 347-354.
  • [75] Park, J.K., Jung, J.Y., Park, Y.H. (2003). Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnology Letters, 25, 2055-2059.
  • [76] Son, H.J., Kim, H.G., Kim, K.K., Kim, H.S., Kim, Y.G., Lee, S.J. (2003). Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresource Technology, 86, 215-219.
  • [77] Son, H.J., Heo, M.S., Kim, Y.G., Lee, S.J. (2001). Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Applied Biochemistry and Biotechnology, 33, 1-5.
  • [78] Bae, S., Shoda, M. (2004). Bacterial cellulose production by fed- -batch fermentation in molasses medium. Biotechnology Progress, 20, 1366-1371.
  • [79] Bae, S., Sugano, Y., Shoda, M. (2004). Improvement of bacterial cellulose production by addition of agar in a jar fermentor. Journal of Bioscience and Bioengineering, 97, 33-38.
  • [80] Chao, Y., Ishida, T., Sugano, Y., Shoda, M. (2000). Bacterial cellulose production by Acetobacter xylinum in a 50L internal-loop airlift reactor. Biotechnology and Bioengineering, 68, 345-352.
  • [81] Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Mioekiewicz, M., Turkiewicz, M., Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, 29, 189-195.
  • [82] Nguyen, V.Y., Flanagan, B., Gidley, M.J., Dykes, G.A. (2008). Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Current Microbiology, 57, 449-453.
  • [83] Keshk, S., Sameshima, K. (2006). Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme and Microbial Technology, 40(1), 4-8.
  • [84] Zhou, L.L., Sun, D.P., Hu, L.Y., Li, Y.W., Yang, J.Z. (2007). Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. Journal of Industrial Microbiology and Biotechnology, 34, 483-489.
  • [85] Jahan, F., Kumar, V., Saxena, R.K. (2018). Distillery effluent as a potential medium for bacterial cellulose production: A biopolymer of great commercial importance. Bioresource Technology, 250, 922-926.
  • [86] Kim, S.Y., Kim, J.N., Wee, Y.J., Park, D.H., Ryu, H.W. (2006). Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Applied Biochemical Biotechnology, 13, 705-715.
  • [87] Seto, A., Saito, Y., Matsushige, M., Kobayashi, H., Sasaki, Y., Tonouchi, N., Tsuchida, T., Yoshinaga, F., Ueda, K., Beppu, T. (2006). Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Applied Microbiology and Biotechnology, 73, 915-921.
  • [88] Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., Yoshinaga, F. (1996). A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. Sucrofermentans. Bioscience, Biotechnology, and Biochemistry, 60, 575-579.
  • [89] Oikawa, T., Ohtori, T., Ameyama, M. (1995). Production of cellulose from D-mannitol by Acetobacter xylinum KU-1. Bioscience, Biotechnology, and Biochemistry, 59, 331-332.
  • [90] Mikkelsen, D., Flanagan, B., Dykes, G., Gidley, M. (2009). Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology, 107, 576-583.
  • [91] Dayal, M. S., Goswami, N., Sahai, A., Jain, V., Mathur, G., Mathur, A. (2013). Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623, Carbohydrate Polymers, 94, 12-16.
  • [92] Ha, J.H., Shehzad, O., Khan, S., Lee, S.Y., Park, J.W., Khan, T., Park, J.K. (2008). Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean Journal of Chemical Engineering, 25, 812-815.
  • [93] Mohite, B.V., Patil, S.V. (2014). Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydate Polymers, 106, 132-141.
  • [94] Hungund, B.S., Gupta, S.G. (2010). Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2, Journal of Microbial and Biochemical Technology, 2, 127-133.
  • [95] Cannon, R.E., Anderson, S.M. (1991). Biogenesis of bacterial cellulose. Critical Reviews in Microbiology, 17(6), 435-447.
  • [96] Hu, Y., Catchmark, J. M. (2010). Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules, 11, 1727-1734.
  • [97] Kim, J.Y., Kim, J.N., Wee, Y.J., Park, D.H., Ryu, H.W. (2007). Bacterial cellulose production by Gluconacetobacter sp. RKY5 in a rotary biofilm contactor. Applied Biochemistry and Biotechnology, 137, 529-537.
  • [98] Jung, J.Y., Khan, T., Park, J.K., Chang, H.N. (2007). Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean Journal of Chemical Engineering, 24, 265-271.
  • [99] Yoshino, T., Asakura, T., Toda, K. (1996). Cellulose production by Acetobacter pasteurianus on silicone membrane. Journal of Fermentation and Bioengineering, 81, 32-36.
  • [100] Hornung, M., Ludwig, M., Gerrard, A.M., Schmauder, H.P. (2006). Optimizing the production of bacterial cellulose in surface culture: Evaluation of substrate mass transfer influences on the bioreaction (Part 1). Engineering in Life Sciences, 6, 537-545.
  • [101] Kongruang, S. (2008). Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Applied Biochemistry and Biotechnology, 148, 245-256.
  • [102] Bielecki, S., Krystynowicz, A., Turkiewicz, M., Kalinowska, H. (2005). Bacterial Cellulose. In: Polysaccharides and Polyamides in the Food Industry, A. Steinbüchel, S.K. Rhee (Eds.), Wiley-VCH Verlag, Weinheim, Germany, pp. 31–85.
  • [103] Sakairi, N., Asano, H., Ogawa, M., Nishi, N., Tokura, S. (1998). A method for direct harvest of bacterial cellulose filaments during continuous cultivation of Acetobacter xylinum. Carbohydrate Polymers, 35, 233-237.
  • [104] Cho, S., Almeida, N. (2012). Dietary fiber and health. CRC Press, 557p, Florida, USA.
  • [105] Mesomya, W., Pakpeankitvatana, V., Komindr, S., Leelahakul, P., Cuptapun, Y., Hengsawadi, D., Tammarate, P., Tangkanakul, P., (2006). Effects of health food from cereal and nata de coco on serum lipids in human songklanakarin. Journal of Science Technology, 28(1), 23-28.
  • [106] Ogawa, R., Tokura S. (1992). Preparation of bacterial cellulose containing N-acetylglucosamine residues. Carbohydrate Polymers, 19, 171-178.
  • [107] David, N.S. (1996). Chemical modification of lignocellulosic materials: Chemical structures of cellulose, hemicelluloses and lignin, Marcel Dekker. Inc., New York, USA.
  • [108] Ng, C., Shyu, Y.T. (2004). Development and production of cholesterol-lowering Monascus-nata complex. World Journal of Microbiology and Biotechnology, 20, 875-879.
  • [109] Jzlová, P., Martinkova, L., Ken, V. (1996). Secondary metabolites of the fungus Monascus: a review. Journal of Industrial Microbiology & Biotechnology, 16(3), 163-170.
  • [110] Purwadaria, T., Gunawan, L., Gunawan, A.W. (2010). The production of nata colored by Monascus purpureus J1 pigments as functional food. Microbiology Indonesia, 4(1), 6-10.
  • [111] Okiyama, A., Motoki, M., Yamanaka, S. (1992). Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocolloids, 6(5), 479-487.
  • [112] Okiyama, A., Motoki, M., Yamanaka, S. (1993). Bacterial cellulose IV. Application to processed foods. Food Hydrocolloids, 6(6), 503-511.
  • [113] Lin, S.B., Chen, L.C., Chen, H.H. (2011). Physical characteristics of surimi and bacterial cellulose composite gel. Journal of Food Process Engineering, 34, 1363-1379.
  • [114] Çakmakçı, M.L., Karahan, A.G., Çakır, İ., Gündoğdu, A., Akoğlu, A. (2008). Selüloz üretiminde kullanılacak mikroorganizmaların izolasyonu, moleküler tanısı ve mikrobiyel selülozun gıda sanayinde kullanım olanaklarının araştırılması. TÜBİTAK TOVAG 105O156 nolu proje raporu.
  • [115] Gao, C., Yan, T., Du, J., He, F., Luo, H., Wan, Y. (2014). Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε-polylysine nanocoatings. Food Hydrocolloids, 36, 204-211.
  • [116] Tome, L.C., Brandão, L., Mendes, A.M., Silvestre, A.J., Neto, C.P., Gandini, A. (2010). Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose, 17(6), 1203-1211.
  • [117] Xiao, L., Mai, Y., He, F., Yu, L., Zhang, L., Tang, H. (2012). Bio-based green composites with high performance from poly (lactic acid) and surfacemodified microcrystalline cellulose. Journal of Materials Chemistry, 22(31), 15732-15739.
  • [118] Nguyen, V.T., Gidley, M.J., Dykes, G.A. (2008). Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiology, 25, 471-478.
  • [119] Maneerung, T., Tokura, S., Rujiravanit, R. (2008). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 72(1), 43-51.
  • [120] Sureshkumar, M., Siswanto, D. Y., Lee, C. (2010). Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. Journal of Materials Chemistry, 20(33), 6948-6955.
  • [121] Iguchi, M., Mitsuhashi, S., Ichimura, K. (1988). Bacterial cellulose-containing molding material having high dynamic strength. US Patent 4,742,164.
  • [122] Krystynowicz, A., Czaja, W., Bielecki, S. (1999). Biosynthesis and application of bacterial cellulose. Zywnosc, 3, 22-33.
  • [123] Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S. (1990). The structure and mechanical properties of sheets prepared from bacterial cellulose. Part II Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. Journal of Materials Science, 25, 2997-3001.
  • [124] Shah, J., Brown, R.M. (2005). Towards electronic displays made from microbial cellulose. Applied Microbiology and Biotechnology, 66(4), 352-355.
  • [125] Halib, N., Amin, M.C.I., Ahmad, I., Hashim, Z., Jamal, N. (2009). Swelling of bacterial cellulose-acrylic acid hydrogels: sensitivity towards external stimuli. Sains Malaysiana, 38(5), 785-791.
  • [126] Halib, N., Amin, M.C.I., Ahmad, I. (2010). Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite. Journal of Applied Polymer Science, 116, 2920-2929.
  • [127] Fontana, J.D., de Souza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti, B.J., de Souza, S.J., Narcisco, G.P., Bichara, J.A., Farah, L.F.X. (1990). Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology, 24, 253-264.
  • [128] Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 27, 2141-2149.
  • [129] Charpentier, P.A., Maguire, A., Wan, W.K. (2006). Surface modification of polyester to produce bacterial cellulose-based vascular prosthetic device. Applied Surface Science, 252, 6360-6367.
  • [130] Krystynowicz, A., Turkiewicz, M., Drynska, E., Galas, E. (1995). Bacterial cellulose biosynthesis and application. Biotechnologia, 30, 120-132.
  • [131] Krystynowicz, A., Czaja, W., Pomorski, L., Kolodziejczyk, M., Bielecki, S. (2000). The evalution of usefulness of microbial cellulose as a wound dressing material. 14th Forum for Applied Biotechnology, 27-28 September 2000, Gent, Belgium.
  • [132] Yamanaka, S., Watanabe, K., Suzuki, Y. (1990). Hollow microbial cellulose, process for preparation thereof, and artificial blood vessel formed of said cellulose. European patent 0396344A2.
  • [133] Klemm, D., Schumann, U., Udhardt, U., Marsch, S. (2001). Bacterial synthesized cellulose - artificial blood vessels for microsurgery. Progress in Polymer Science, 26(9), 1561-1599.
  • [134] Haimer, E., Wendland, M., Schlufter, K., Frankenfeld, K., Miethe, P., Potthast, A., Rosenau, T., Liebner, F. (2010). Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromolecular Symposia, 294(2), 64-74.
Toplam 134 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Melih Güzel 0000-0001-5374-8838

Özlem Akpınar 0000-0001-6593-8495

Yayımlanma Tarihi 5 Ağustos 2018
Gönderilme Tarihi 19 Şubat 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 16 Sayı: 2

Kaynak Göster

APA Güzel, M., & Akpınar, Ö. (2018). Bakteriyel Selülozların Üretimi ve Özellikleri ile Gıda ve Gıda Dışı Uygulamalarda Kullanımı. Akademik Gıda, 16(2), 241-251. https://doi.org/10.24323/akademik-gida.449633
AMA Güzel M, Akpınar Ö. Bakteriyel Selülozların Üretimi ve Özellikleri ile Gıda ve Gıda Dışı Uygulamalarda Kullanımı. Akademik Gıda. Ağustos 2018;16(2):241-251. doi:10.24323/akademik-gida.449633
Chicago Güzel, Melih, ve Özlem Akpınar. “Bakteriyel Selülozların Üretimi Ve Özellikleri Ile Gıda Ve Gıda Dışı Uygulamalarda Kullanımı”. Akademik Gıda 16, sy. 2 (Ağustos 2018): 241-51. https://doi.org/10.24323/akademik-gida.449633.
EndNote Güzel M, Akpınar Ö (01 Ağustos 2018) Bakteriyel Selülozların Üretimi ve Özellikleri ile Gıda ve Gıda Dışı Uygulamalarda Kullanımı. Akademik Gıda 16 2 241–251.
IEEE M. Güzel ve Ö. Akpınar, “Bakteriyel Selülozların Üretimi ve Özellikleri ile Gıda ve Gıda Dışı Uygulamalarda Kullanımı”, Akademik Gıda, c. 16, sy. 2, ss. 241–251, 2018, doi: 10.24323/akademik-gida.449633.
ISNAD Güzel, Melih - Akpınar, Özlem. “Bakteriyel Selülozların Üretimi Ve Özellikleri Ile Gıda Ve Gıda Dışı Uygulamalarda Kullanımı”. Akademik Gıda 16/2 (Ağustos 2018), 241-251. https://doi.org/10.24323/akademik-gida.449633.
JAMA Güzel M, Akpınar Ö. Bakteriyel Selülozların Üretimi ve Özellikleri ile Gıda ve Gıda Dışı Uygulamalarda Kullanımı. Akademik Gıda. 2018;16:241–251.
MLA Güzel, Melih ve Özlem Akpınar. “Bakteriyel Selülozların Üretimi Ve Özellikleri Ile Gıda Ve Gıda Dışı Uygulamalarda Kullanımı”. Akademik Gıda, c. 16, sy. 2, 2018, ss. 241-5, doi:10.24323/akademik-gida.449633.
Vancouver Güzel M, Akpınar Ö. Bakteriyel Selülozların Üretimi ve Özellikleri ile Gıda ve Gıda Dışı Uygulamalarda Kullanımı. Akademik Gıda. 2018;16(2):241-5.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).