Araştırma Makalesi
BibTex RIS Kaynak Göster

CONVECTIVE DRYING OF CHOKEBERRY CV. “VIKING” AND MODELING OF DRYING KINETICS

Yıl 2024, , 847 - 862, 10.10.2024
https://doi.org/10.15237/gida.GD24019

Öz

In this study, the effects of drying air temperatures (50, 60, 70, and 80°C) and velocities (0.5, 0.8, and 1.2 m/s) on chokeberry quality during convective drying were evaluated. The drying time decreased significantly with increasing drying air temperatures and velocities, from 2265 minutes at 50°C to 195 minutes at 80°C, and from 360 minutes at 0.5 m/s to 240 minutes at 1.2 m/s at 70°C. Higher drying air temperatures and velocities also enhanced the fruit color quality. The best antioxidant activity, anthocyanin, and phenolic content were achieved at 70°C with dryin air velocities between 0.5 m/s and 1.2 m/s. The Midilli et al. model provided the best fit for the drying kinetics, with high accuracy (R²≥0.9978, χ²≤0.0003, RMSE≤0.0161).

Kaynakça

  • Adak, N., Heybeli, N., Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219:109-116. https://doi.org/10.1016/j.foodchem.2016.09.103
  • Basar, E.K., Heybeli, N., Firat, M.Z., Ertekin, C. (2019). Nonlinear models for infrared drying of mint. Latin American Applied Research, An International Journal 49: 19-24.
  • Bingol, G., Pan, Z., Roberts, J.S, Devres, Y.O., Balaban, M.O. (2008). Mathematical modeling of microwave-assisted convective heating and drying of grapes. Int J Agric Biol Eng, 1 (2), 46-54.
  • Borowska, S., Brzoska, M.M. (2016). Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Comprehensive Reviews in Food Science and Food Safety, 15 (6):982-1017. https://doi.org/ 10.1111/1541-4337.12221
  • Boz, Y., Poyraz Engin, S. (2019). Aronya (Aronia melanocarpa (Michx.) Elliot) meyvesinin insan sağlığı üzerine etkileri. VI. Ulusal Üzümsü Meyveler Sempozyumu 5-7 Eylül 2019, Samsun, sayfa 35 (In Turkish).
  • Bussieres, J., Boudreau, S., Clement–Mathieu, G., Dansereau, B., Rochefort, L. (2008). Growing black chokeberry (Aronia melanocarpa) in cut-over peatlands. HortScience, 43 (2):6. https://doi.org/ 10.21273/HORTSCI.43.2.494
  • Calin-Sanchez, A., Kharaghani, A., Lech, K., Figiel, A., Carbonell-Barrachina, A.A., Tsotsas, E. (2015). Drying kinetics and microstructural and sensory properties of black chokeberry (Aronia melanocarpa) as affected by drying method. Food Bioprocess Technology, 8:6 3–74. https://doi.org/ 10.1007/s11947-014-1383-x
  • Dincer, C., Dogan, A., Erkan, M. (2022). Effect of various drying methods on drying characteristics of black and white myrtle fruits (Myrtus communis L.). Erwerbs-Obstbau, 64 (3):433-443.
  • Dincer, C., Tontul, I., Cam, I.B., Ozdemir, K.S., Topuz, A., Nadeem, H.S., Gokturk, R.S. (2013). Phenolic composition and antioxidant activity of Salvia tomentosa Miller: Effects of cultivation, harvesting year, and storage. Turkish Journal of Agriculture and Forestry, 37 (5):561–567. https://doi.org/10.3906/tar-1211-72
  • Erbay, Z. and Icier, F. (2010) A Review of Thin Layer Drying of Foods: Theory, Modeling and Experimental Results. Critical Reviews in Food Science and Nutrition, 50, 441-464.
  • Ertekin, C., Firat, M.Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57: 701-717.
  • Ertekin, C., Heybeli, N. (2014). Thin-layer infrared drying of mint leaves. Journal of Food Processing and Preservation, 38: 1480-1490.
  • Fernandez-Leon, M.F., Fernandez-Leon, A.M., Lozano, M., Ayuso, M.C., Amodio, M.L., Colelli, G., Gonzalez-Gomez, D. (2013). Retention of quality and functional values of broccoli ‘Parthenon’ stored in modified atmosphere packaging. Food Control, 31 (2):302-313. https://doi.org/10.1016/j.foodcont.2012.10.012
  • Gasiorowski, K., Szyba, K., Brokos, B., Kolaczynska, B., Jankowiak-Wlodarczyk, M., Oszmianski, J. (1997). Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Letters 119:37-46. https://doi.org/ 10.1016/S0304-3835(97)00248-6
  • Hellstrom, J., Rajaniemi, S., Kivijarvi, P., Mattila, P. (2007). The effect of processing on chokeberry (Aronia Medik.) polyphenols. In: NJF Report, Nordic Association of Agricultural Scientists 3 (1):40-41.
  • Horszwald, A., Julien, H., Andlauer, W. (2013). Characterisation of Aronia powders obtained by different drying processes. Food Chemistry, 141 (3):2858-2863. https://doi.org/10.1016/ j.foodchem.2013.05.103
  • Jeppsson, N., Johansson, R. (2000). Changes in fruit quality in black chokeberry (Aronia melanocarpa) during maturation. Journal of Horticultural Science and Biotechnology, 75 (3):340-345. https://doi.org/10.1080/14620316.2000.11511247
  • Karaaslan, S., Ekinci, K., Ertekin, C., Kumbul, B.S. (2021). Thin Layer Peach Drying in Solar Tunnel Drier. Erwerbs-Obstbau, 63: 65-73.
  • Kayisoglu, S., Ertekin, C. (2011). Vacuum drying kinetics of barbunya bean. Philippine Agricultural Scientist, 94: 285-291.
  • Krawiec, P. (2008). Effects of biostimulators on growth, cropping and fruit quality of chokeberry. Biostimulators in modern agriculture. Fruit Crops Warsaw, 42-48.
  • Krokida, M.K., Marinos-Kouris, D. (2003). Rehydration kinetics of dehydrated products. Journal of Food Engineering 57:1-7. https://doi.org/ 10.1016/S0260-8774(02)00214-5
  • Kulling, S.E., Rawel, H.M. (2008). Chokeberry (Aronia melanocarpa)-A review on the characteristic components and potential health effects. Planta Medica, 74: 1625-1634. https://doi.org/10.1055/ s-0028-1088306
  • Liu, S., Xu, Q., Li, X., Wang, Y., Zhu, J., Ning, C., Meng, X. (2016). Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innovative Food Science and Emerging Technologies, 36: 48-58. https://doi.org/10.1016/ j.ifset.2016.06.001
  • Martin-Gomez, J., Varo, M.A., Merida, J., Serratosa, M.P. (2020). Influence of drying processes on anthocyanin profiles, total phenolic compounds and antioxidant activities of blueberry (Vaccinium corymbosum). LWT Food Sci Technol, 120, 108931.doi:10.1016/ j.lwt.2019.108931.
  • Mayer-Miebach, E., Adamiuk, M., Behsnilian, D. (2012). Stability of chokeberry bioactive polyphenols during juice processing and stabilization of a polyphenol-rich material from the by-product. Agriculture, 2: 244-258. https://doi.org/10.3390/agriculture2030244
  • Menges, H.O., Unver, A., Ozcan, M.M., Ertekin, C. (2019). The Effects of drying parameters on drying characteristics, colorimetric differences, antioxidant capacity and total phenols of sliced kiwifruit. Erwerbs-Obstbau, 61: 195-207.
  • Mujumdar, A.S. (2014). Handbook of Industrial Drying, Fourth Edition. CRC Press, ISBN 1466596651, 9781466596658, 1348 pages.
  • Nsonzi, F., Ramaswamy, H. S. (1998). Quality evaluation of osmo-convective dried blueberries. Drying Technology, 16: 705-723.
  • Oszmianski, J., Lachowicz, S. (2016). Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules, 21(8): 1098. https://doi.org/10.3390/molecules21081098
  • Oszmianski, J., Sapis, J.C. (1988). Anthocyanins in fruits of Aronia melanocarpa (chokeberry). Journal of Food Science, 53: 1241-1242. https://doi.org/ 10.1111/j.1365-2621.1988.tb13577.x
  • Petkovic, M., Durovic, I., Miletic, N., Radovanovic, J. (2019). Effect of convective drying method of chokeberry (Aronia melanocarpa L.) on drying kinetics, Bioactive Components and Sensory Characteristics of Bread with Chokeberry Powder. Periodica Polytechnica Chemical Engineering, 63(4): 600-608, https://doi.org/10.3311/ PPch.13783
  • Poyraz Engin, S., Mert, C., Fidancı A., Boz, Y. (2016). Aronya (Aronia melanocarpa (Michx.) Elliot) meyve türünde morfolojik incelemeler. Bahçe, 45(2): 71-78 (In Turkish).
  • Sadowska, A., Swiderski, F., Rakowska, R., Hallmann, E. (2019). Comparison of quality and microstructure of chokeberry powders prepared by different drying methods, including innovative fluidised bed jet milling and drying. Food Science and Biotechnology, 28: 1073-1081. https://doi.org/ 10.1007/s10068-019-00556-1
  • Sadowska, K., Andrzejewska, J., Kloska, L. (2017). Influence of freezing, lyophilisation and air drying on the total monometric anthocyanins, vitamin C and antioxidant capacity of selected berries. International Journal of Food Science and Technology, 52: 1246-1251. https://doi.org/ 10.1111/ijfs.13391
  • Samoticha, J., Wojdyło, A., Lech, K. (2016). The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT- Food Science and Technology, 66: 484-489. https://doi.org/10.1016/ j.lwt.2015.10.073
  • Shi, J., Pan, Z., McHugh, T.H., Wood, D., Hirschberg, E., Olson, D. (2008). Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT Food Sci Technol, 41 (10):1962-1972. doi: 10.1016/j.lwt.2008.01.003.
  • Sidor, A., Gramza-Michalowska, A. (2019). Black chokeberry Aronia melanocarpa L.-A qualitative composition, phenolic profile and antioxidant potential. Molecules 24 (20):3710. https://doi.org/10.3390/molecules24203710
  • Sonmete, M.H., Menges, H.O., Ertekin, C., Ozcan, M.M. (2017). Mathematical modeling of thin layer drying of carrot slices by forced convection. Journal of Food Measurement and Characterization, 11: 629-638.
  • Thi, N.D., Hwang, E.S. (2016). Effects of drying methods on contents of bioactive compounds and antioxidant activities of black chokeberries (Aronia melanocarpa). Food Science and Biotechnology, 25: 55-61. https://doi.org/10.1007/s10068-016-0008-8
  • Tolic, M.T., Jurcevic, I.L., Krbavcic, I.P., Markovic, K., Vahcic, N. (2015). Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technology and Biotechnology, 53 (2):171-179. https://doi.org/10.17113/ftb.53.02.15.3833
  • Wang, W.D., Xu, S.Y. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82 (3):271–275. https://doi.org/10.1016/ j.jfoodeng.2007.01.018
  • Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E., Prior, R.L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54 (1):4069-4075. https://doi.org/ 10.1021/jf060300l
  • Yaldiz, O., Ertekin, C. (2001). Thin layer solar drying of some vegetables. Drying Technology, 19 (3-4):583-597. doi:10.1081/DRT-100103936

ARONYANIN KONVEKTİF KURUTULMASI VE KURUTMA KİNETİĞİNİN MODELLEMESİ

Yıl 2024, , 847 - 862, 10.10.2024
https://doi.org/10.15237/gida.GD24019

Öz

Bu çalışmada, konvektif kurutma sırasında farklı kurutma havası sıcaklıklarının (50, 60, 70 ve 80°C) ve hızlarının (0.5, 0.8 ve 1.2 m/s) aronya meyvesi kalitesi üzerindeki etkileri incelenmiştir. Artan sıcaklık ve hava hızı ile kuruma süresi önemli ölçüde azalmış; 50°C’de 2265 dakika olan süre, 80°C’de 195 dakikaya düşmüştür. 70°C’de ise 0.5 m/s’de 360 dakika olan süre, 1.2 m/s’de 240 dakikaya düşmüştür. Daha yüksek sıcaklık ve artan hava hızları meyve rengi kalitesini iyileştirmiştir. En yüksek antioksidan aktivitesi, toplam antosiyanin ve toplam fenolik içerik 70°C’de, 0.5 m/s ile 1.2 m/s hava hızları arasında elde edilmiştir. Kuruma kinetiklerinin tanımlanmasında ise Midilli ve ark. modeli yüksek doğrulukla uyum sağlamıştır (R²≥0.9978, χ²≤0.0003, RMSE≤0.0161).

Kaynakça

  • Adak, N., Heybeli, N., Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219:109-116. https://doi.org/10.1016/j.foodchem.2016.09.103
  • Basar, E.K., Heybeli, N., Firat, M.Z., Ertekin, C. (2019). Nonlinear models for infrared drying of mint. Latin American Applied Research, An International Journal 49: 19-24.
  • Bingol, G., Pan, Z., Roberts, J.S, Devres, Y.O., Balaban, M.O. (2008). Mathematical modeling of microwave-assisted convective heating and drying of grapes. Int J Agric Biol Eng, 1 (2), 46-54.
  • Borowska, S., Brzoska, M.M. (2016). Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Comprehensive Reviews in Food Science and Food Safety, 15 (6):982-1017. https://doi.org/ 10.1111/1541-4337.12221
  • Boz, Y., Poyraz Engin, S. (2019). Aronya (Aronia melanocarpa (Michx.) Elliot) meyvesinin insan sağlığı üzerine etkileri. VI. Ulusal Üzümsü Meyveler Sempozyumu 5-7 Eylül 2019, Samsun, sayfa 35 (In Turkish).
  • Bussieres, J., Boudreau, S., Clement–Mathieu, G., Dansereau, B., Rochefort, L. (2008). Growing black chokeberry (Aronia melanocarpa) in cut-over peatlands. HortScience, 43 (2):6. https://doi.org/ 10.21273/HORTSCI.43.2.494
  • Calin-Sanchez, A., Kharaghani, A., Lech, K., Figiel, A., Carbonell-Barrachina, A.A., Tsotsas, E. (2015). Drying kinetics and microstructural and sensory properties of black chokeberry (Aronia melanocarpa) as affected by drying method. Food Bioprocess Technology, 8:6 3–74. https://doi.org/ 10.1007/s11947-014-1383-x
  • Dincer, C., Dogan, A., Erkan, M. (2022). Effect of various drying methods on drying characteristics of black and white myrtle fruits (Myrtus communis L.). Erwerbs-Obstbau, 64 (3):433-443.
  • Dincer, C., Tontul, I., Cam, I.B., Ozdemir, K.S., Topuz, A., Nadeem, H.S., Gokturk, R.S. (2013). Phenolic composition and antioxidant activity of Salvia tomentosa Miller: Effects of cultivation, harvesting year, and storage. Turkish Journal of Agriculture and Forestry, 37 (5):561–567. https://doi.org/10.3906/tar-1211-72
  • Erbay, Z. and Icier, F. (2010) A Review of Thin Layer Drying of Foods: Theory, Modeling and Experimental Results. Critical Reviews in Food Science and Nutrition, 50, 441-464.
  • Ertekin, C., Firat, M.Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57: 701-717.
  • Ertekin, C., Heybeli, N. (2014). Thin-layer infrared drying of mint leaves. Journal of Food Processing and Preservation, 38: 1480-1490.
  • Fernandez-Leon, M.F., Fernandez-Leon, A.M., Lozano, M., Ayuso, M.C., Amodio, M.L., Colelli, G., Gonzalez-Gomez, D. (2013). Retention of quality and functional values of broccoli ‘Parthenon’ stored in modified atmosphere packaging. Food Control, 31 (2):302-313. https://doi.org/10.1016/j.foodcont.2012.10.012
  • Gasiorowski, K., Szyba, K., Brokos, B., Kolaczynska, B., Jankowiak-Wlodarczyk, M., Oszmianski, J. (1997). Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Letters 119:37-46. https://doi.org/ 10.1016/S0304-3835(97)00248-6
  • Hellstrom, J., Rajaniemi, S., Kivijarvi, P., Mattila, P. (2007). The effect of processing on chokeberry (Aronia Medik.) polyphenols. In: NJF Report, Nordic Association of Agricultural Scientists 3 (1):40-41.
  • Horszwald, A., Julien, H., Andlauer, W. (2013). Characterisation of Aronia powders obtained by different drying processes. Food Chemistry, 141 (3):2858-2863. https://doi.org/10.1016/ j.foodchem.2013.05.103
  • Jeppsson, N., Johansson, R. (2000). Changes in fruit quality in black chokeberry (Aronia melanocarpa) during maturation. Journal of Horticultural Science and Biotechnology, 75 (3):340-345. https://doi.org/10.1080/14620316.2000.11511247
  • Karaaslan, S., Ekinci, K., Ertekin, C., Kumbul, B.S. (2021). Thin Layer Peach Drying in Solar Tunnel Drier. Erwerbs-Obstbau, 63: 65-73.
  • Kayisoglu, S., Ertekin, C. (2011). Vacuum drying kinetics of barbunya bean. Philippine Agricultural Scientist, 94: 285-291.
  • Krawiec, P. (2008). Effects of biostimulators on growth, cropping and fruit quality of chokeberry. Biostimulators in modern agriculture. Fruit Crops Warsaw, 42-48.
  • Krokida, M.K., Marinos-Kouris, D. (2003). Rehydration kinetics of dehydrated products. Journal of Food Engineering 57:1-7. https://doi.org/ 10.1016/S0260-8774(02)00214-5
  • Kulling, S.E., Rawel, H.M. (2008). Chokeberry (Aronia melanocarpa)-A review on the characteristic components and potential health effects. Planta Medica, 74: 1625-1634. https://doi.org/10.1055/ s-0028-1088306
  • Liu, S., Xu, Q., Li, X., Wang, Y., Zhu, J., Ning, C., Meng, X. (2016). Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innovative Food Science and Emerging Technologies, 36: 48-58. https://doi.org/10.1016/ j.ifset.2016.06.001
  • Martin-Gomez, J., Varo, M.A., Merida, J., Serratosa, M.P. (2020). Influence of drying processes on anthocyanin profiles, total phenolic compounds and antioxidant activities of blueberry (Vaccinium corymbosum). LWT Food Sci Technol, 120, 108931.doi:10.1016/ j.lwt.2019.108931.
  • Mayer-Miebach, E., Adamiuk, M., Behsnilian, D. (2012). Stability of chokeberry bioactive polyphenols during juice processing and stabilization of a polyphenol-rich material from the by-product. Agriculture, 2: 244-258. https://doi.org/10.3390/agriculture2030244
  • Menges, H.O., Unver, A., Ozcan, M.M., Ertekin, C. (2019). The Effects of drying parameters on drying characteristics, colorimetric differences, antioxidant capacity and total phenols of sliced kiwifruit. Erwerbs-Obstbau, 61: 195-207.
  • Mujumdar, A.S. (2014). Handbook of Industrial Drying, Fourth Edition. CRC Press, ISBN 1466596651, 9781466596658, 1348 pages.
  • Nsonzi, F., Ramaswamy, H. S. (1998). Quality evaluation of osmo-convective dried blueberries. Drying Technology, 16: 705-723.
  • Oszmianski, J., Lachowicz, S. (2016). Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules, 21(8): 1098. https://doi.org/10.3390/molecules21081098
  • Oszmianski, J., Sapis, J.C. (1988). Anthocyanins in fruits of Aronia melanocarpa (chokeberry). Journal of Food Science, 53: 1241-1242. https://doi.org/ 10.1111/j.1365-2621.1988.tb13577.x
  • Petkovic, M., Durovic, I., Miletic, N., Radovanovic, J. (2019). Effect of convective drying method of chokeberry (Aronia melanocarpa L.) on drying kinetics, Bioactive Components and Sensory Characteristics of Bread with Chokeberry Powder. Periodica Polytechnica Chemical Engineering, 63(4): 600-608, https://doi.org/10.3311/ PPch.13783
  • Poyraz Engin, S., Mert, C., Fidancı A., Boz, Y. (2016). Aronya (Aronia melanocarpa (Michx.) Elliot) meyve türünde morfolojik incelemeler. Bahçe, 45(2): 71-78 (In Turkish).
  • Sadowska, A., Swiderski, F., Rakowska, R., Hallmann, E. (2019). Comparison of quality and microstructure of chokeberry powders prepared by different drying methods, including innovative fluidised bed jet milling and drying. Food Science and Biotechnology, 28: 1073-1081. https://doi.org/ 10.1007/s10068-019-00556-1
  • Sadowska, K., Andrzejewska, J., Kloska, L. (2017). Influence of freezing, lyophilisation and air drying on the total monometric anthocyanins, vitamin C and antioxidant capacity of selected berries. International Journal of Food Science and Technology, 52: 1246-1251. https://doi.org/ 10.1111/ijfs.13391
  • Samoticha, J., Wojdyło, A., Lech, K. (2016). The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT- Food Science and Technology, 66: 484-489. https://doi.org/10.1016/ j.lwt.2015.10.073
  • Shi, J., Pan, Z., McHugh, T.H., Wood, D., Hirschberg, E., Olson, D. (2008). Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT Food Sci Technol, 41 (10):1962-1972. doi: 10.1016/j.lwt.2008.01.003.
  • Sidor, A., Gramza-Michalowska, A. (2019). Black chokeberry Aronia melanocarpa L.-A qualitative composition, phenolic profile and antioxidant potential. Molecules 24 (20):3710. https://doi.org/10.3390/molecules24203710
  • Sonmete, M.H., Menges, H.O., Ertekin, C., Ozcan, M.M. (2017). Mathematical modeling of thin layer drying of carrot slices by forced convection. Journal of Food Measurement and Characterization, 11: 629-638.
  • Thi, N.D., Hwang, E.S. (2016). Effects of drying methods on contents of bioactive compounds and antioxidant activities of black chokeberries (Aronia melanocarpa). Food Science and Biotechnology, 25: 55-61. https://doi.org/10.1007/s10068-016-0008-8
  • Tolic, M.T., Jurcevic, I.L., Krbavcic, I.P., Markovic, K., Vahcic, N. (2015). Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technology and Biotechnology, 53 (2):171-179. https://doi.org/10.17113/ftb.53.02.15.3833
  • Wang, W.D., Xu, S.Y. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82 (3):271–275. https://doi.org/10.1016/ j.jfoodeng.2007.01.018
  • Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E., Prior, R.L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54 (1):4069-4075. https://doi.org/ 10.1021/jf060300l
  • Yaldiz, O., Ertekin, C. (2001). Thin layer solar drying of some vegetables. Drying Technology, 19 (3-4):583-597. doi:10.1081/DRT-100103936
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kurutma Teknolojileri
Bölüm Makaleler
Yazarlar

Nafiye Ünal 0000-0002-0853-6972

Ahmet Süslü 0000-0003-4016-589X

Recep Külcü 0000-0002-7185-6514

Cüneyt Dinçer 0000-0002-9160-4242

Eda Elif Yavuzlar 0000-0002-7304-7868

Can Ertekin 0000-0003-2987-2438

Yayımlanma Tarihi 10 Ekim 2024
Gönderilme Tarihi 30 Ocak 2024
Kabul Tarihi 17 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ünal, N., Süslü, A., Külcü, R., Dinçer, C., vd. (2024). CONVECTIVE DRYING OF CHOKEBERRY CV. “VIKING” AND MODELING OF DRYING KINETICS. Gıda, 49(5), 847-862. https://doi.org/10.15237/gida.GD24019
AMA Ünal N, Süslü A, Külcü R, Dinçer C, Yavuzlar EE, Ertekin C. CONVECTIVE DRYING OF CHOKEBERRY CV. “VIKING” AND MODELING OF DRYING KINETICS. GIDA. Ekim 2024;49(5):847-862. doi:10.15237/gida.GD24019
Chicago Ünal, Nafiye, Ahmet Süslü, Recep Külcü, Cüneyt Dinçer, Eda Elif Yavuzlar, ve Can Ertekin. “CONVECTIVE DRYING OF CHOKEBERRY CV. ‘VIKING’ AND MODELING OF DRYING KINETICS”. Gıda 49, sy. 5 (Ekim 2024): 847-62. https://doi.org/10.15237/gida.GD24019.
EndNote Ünal N, Süslü A, Külcü R, Dinçer C, Yavuzlar EE, Ertekin C (01 Ekim 2024) CONVECTIVE DRYING OF CHOKEBERRY CV. “VIKING” AND MODELING OF DRYING KINETICS. Gıda 49 5 847–862.
IEEE N. Ünal, A. Süslü, R. Külcü, C. Dinçer, E. E. Yavuzlar, ve C. Ertekin, “CONVECTIVE DRYING OF CHOKEBERRY CV. ‘VIKING’ AND MODELING OF DRYING KINETICS”, GIDA, c. 49, sy. 5, ss. 847–862, 2024, doi: 10.15237/gida.GD24019.
ISNAD Ünal, Nafiye vd. “CONVECTIVE DRYING OF CHOKEBERRY CV. ‘VIKING’ AND MODELING OF DRYING KINETICS”. Gıda 49/5 (Ekim 2024), 847-862. https://doi.org/10.15237/gida.GD24019.
JAMA Ünal N, Süslü A, Külcü R, Dinçer C, Yavuzlar EE, Ertekin C. CONVECTIVE DRYING OF CHOKEBERRY CV. “VIKING” AND MODELING OF DRYING KINETICS. GIDA. 2024;49:847–862.
MLA Ünal, Nafiye vd. “CONVECTIVE DRYING OF CHOKEBERRY CV. ‘VIKING’ AND MODELING OF DRYING KINETICS”. Gıda, c. 49, sy. 5, 2024, ss. 847-62, doi:10.15237/gida.GD24019.
Vancouver Ünal N, Süslü A, Külcü R, Dinçer C, Yavuzlar EE, Ertekin C. CONVECTIVE DRYING OF CHOKEBERRY CV. “VIKING” AND MODELING OF DRYING KINETICS. GIDA. 2024;49(5):847-62.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/