Araştırma Makalesi
BibTex RIS Kaynak Göster

THERMAL PROPERTIES AND ESTIMATED GLYCEMIC INDEX OF DIFFERENT COMPOSITE FLOURS AND THEIR GLUTEN-FREE BREAD MAKING PERFORMANCES

Yıl 2019, , 143 - 152, 15.02.2019
https://doi.org/10.15237/gida.GD18105

Öz

This study aimed to investigate
thermal properties and estimated glycemic index of various gluten-free flours
(rice, chestnut, chickpea and bean). Gluten-free bread was prepared by mixing
chestnut, chickpea and bean flours with rice flour at different ratio (0:100,
25:75, 50:50) using straight dough bread making process. Bean flour reflected
the lower estimated glycemic index as compared to the other gluten-free flours.
The chestnut-rice flour (50:50) bread
exhibited
the highest texture firmness after 8 days of storage, followed by the rice
flour bread. Chestnut-rice flour (
25:75) bread was the swellest
comparatively. Future studies may be focused on developing the sensorial
characteristics of gluten-free breads prepared from chickpea and bean flours.

Kaynakça

  • AACC, American Association of Cereal Chemists. (1995). Approved methods of the AACC. (9th ed.) Method 10-09.
  • AACC, American Association of Cereal Chemists. (2000). Approved methods of the AACC (10th ed.). Method 74-09.
  • AACC, American Association of Cereal Chemists. (2000). Approved Methods of the AACC. 10th Ed. Hagberg Falling Number Method 56-81b.
  • Angioloni, A., Collar, C. (2012). High legume-wheat matrices: an alternative to promote bread nutritional value meeting dough viscoelastic restrictions. European Food Research and Technology, 234(2): 273-284, doi: 10.1007/s00217-011-1637-z.
  • Annett, L. E., Muralidharan, V., Boxall, P. C., Cash, S. B., Wismer, W. V. (2008). Influence of health and environmental information on hedonic evaluation of organic and conventional bread. Journal of Food Science, 73(4): 50-57, doi: https://doi.org/10.1111/j.1750-3841.2008.00723.x.
  • Anton, A. A., Artfield, S. D. (2008). Hydrocolloids in gluten-free breads: a review. International Journal of Food Sciences and Nutrition, 59(1): 11-23, doi: 10.1080/09637480701625630.
  • Arocha Gularte, M., Gómez, M., Rosell, C. M. (2012). Impact of legume flours on quality and in vitro digestibility of starch and protein from gluten-free cakes. Food and Bioprocess Technology, 5(8): 3142–3150, doi: 10.1007/s11947-011-0642-3.
  • Attanasio, G., Cinquanta, L., Albanese, D., Di Matteo, M. (2004). Effects of drying temperatures on physico-chemical properties of dried and rehydrated chestnuts (Castanea sativa). Food Chemistry, 88(4): 583-590, doi: 10.1016/j.foodchem.2004.01.071.
  • Chenlo, F., Moreira, R., Pereira, G. Silva, C.C. (2007). Evaluation of the rheological behaviour of chestnut (castanea sativa mill) flour pastes as function of water content and temperature. Electronic Journal of Environmental Agriculture and Food Chemistry, 6: 1794–1802.
  • Chung, H. J., Liu, Q., Hoover, R., Warkentin, T. D., Vandenberg, B. (2008). In vitro starch digestibility, expected glycemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chemistry, 111(2): 316-321, doi: 10.1016/j.foodchem.2008.03.062.
  • Chung, H. J., Liu, Q., Pauls, K. P., Fan, M. Z., Yada, R. (2008). In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Research International, 41(9): 869-875, doi: 10.1016/j.foodres.2008.03.013.
  • Correia, P., Beirão-da-Costa, M. L. (2012). Effect of drying temperatures on starch-related functional and thermal properties of chestnut flours. Food and Bioproducts Processing, 90(2): 284-294, doi: 10.1016/j.fbp.2011.06.008.
  • Demirkesen, I., Mert, B., Şumnu, G., Şahin, S. (2010a). Utilization of chestnut flour in gluten-free bread formulations. Journal of Food Engineering, 101(3): 329-336, doi: 10.1016/j.jfoodeng.2010.07.017.
  • Demirkesen, I., Mert, B., Şumnu, G., Şahin, S. (2010b). Rheological properties of gluten-free bread formulations. Journal of food Engineering, 96(2): 295-303, doi: 10.1016/j.jfoodeng.2009.08.004.
  • Farrell, J. R., Kelly, P. C. (2002). Coeliac sprue. The New England Journal of Medicine, 346(3): 180-188. doi: 10.1056/NEJMra010852.
  • Fasano, A., Catassi, C. (2001). Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum. Gastroenterology, 120(3): 636-651, doi: 10.1053/gast.2001.22123.
  • Fasano, A. (2005). Clinical presentation of coeliac disease in the pediatric population. Gastroenterology, 128(4): 68-73, doi: 10.1053/j.gastro.2005.02.015.
  • Foster-Powell, K., Brand Miller, J. (1995). International tables of glycemic index. American Journal of Clinical Nutrition, 62(4): 871–893, doi: 10.1093/ajcn/62.4.871S.
  • Gallagher, E., Gormley, T. R. Arendt, E. K. (2003). Crust and crumb characteristics of gluten free breads. Journal of Food Engineering. 56(2-3): 153-161, doi: 10.1016/S0260-8774(02)00244-3.
  • Gallagher, E., Gormley, T. R., Arendt, E. K. (2004). Recent advances in the formulation of gluten-free cereal-based products. Trends in Food Science and Technology, 15(3-4): 143–152, doi: 10.1016/j.tifs.2003.09.012.
  • Gebremariam, M. M., Zarnkow, M., Becker, T. (2014). Teff (Eragrostis tef) as a raw material for malting, brewing and manufacturing of gluten-free foods and beverages: a review. Journal of Food Science and Technology, 51(11): 2881-2895, doi: 10.1007/s13197-012-.
  • Giuberti, G., Gallo, A., Cerioli, C., Fortunati, P., Masoero, F. (2015). Cooking quality and starch digestibility of gluten free pasta using new bean flour. Food Chemistry, 175: 43-49, doi: 10.1016/j.foodchem.2014.11.127.
  • Goñi, I., Garcia-Alonso, A., Saura-Calixto F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3): 427-37, doi: 10.1016/S0271-5317(97)00010-9.
  • Gujral, H. S., Rosell, C. M. (2004). Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Research International, 37(1): 75-81. doi: 10.1016/j.foodres.2003.08.001.
  • Hager, A. S., Arendt, E. K. (2013). Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocolloids, 32(1): 195-203, doi: 10.1016/j.foodhyd.2012.12.021.
  • Houben, A., Höchstötter, A., Becker, T. (2012). Possibilities to increase the quality in gluten-free bread production: an overview. European Food Research and Technology, 235(2): 195-208, doi: 10.1007/s00217-012-1720-0.
  • Haque, A., Morris, E. R. (1994). Combined use of ispaghula and HPMC to replace or augment gluten in breadmaking. Food Research International. 27(4): 379-393, doi: 10.1016/0963-9969(94)90194-5.
  • Kaur, M., Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 91(3): 403-411, doi: 10.1016/j.foodchem.2004.06.015.
  • Kim, H. J., White, P. J. (2012). In vitro digestion rate and estimated glycemic index of oat flours from typical and high β-glucan oat lines. Journal of Agricultural and Food Chemistry, 60(20): 5237-5242, doi: 10.1021/jf300429u.
  • Kohajdová, Z., Karovičová, J., Magala, M. (2013). Effect of lentil and bean flours on rheological and baking properties of wheat dough. Chemical Papers, 67(4): 398-407, doi: 10.2478/s11696-012-0295-3.
  • Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., Biliaderis, C. G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3): 1033-1047, doi: 10.1016/j.jfoodeng.2006.03.032.
  • López, A. C. B., Pereira, A. J. G., Junqueira, R. G. (2004). Flour mixture of rice flour, corn and cassava starch in the production of gluten-free white bread. Brazilian Archives of Biology and Technology, 47(1): 63-70, doi: 10.1590/S1516-89132004000100009.
  • McCarthy, D. F., Gallagher, E., Gormley, T. R., Schober, T. J., Arendt, E. K. (2005). Application of response surface methodology in the development of gluten‐free bread. Cereal Chemistry, 82(5): 609-615, doi: 10.1094/CC-82-0609.
  • Miñarro, B., Albanell, E., Aguilar, N., Guamis, B., Capellas, M. (2012). Effect of legume flours on baking characteristics of gluten-free bread. Journal of Cereal Science, 56(2): 476-481, doi: 10.1016/j.jcs.2012.04.012.
  • Moore, M. M., Heinbockel, M., Dockery, P., Ulmer, H. M., Arendt, E. K. (2006). Network formation in gluten‐free bread with application of transglutaminase. Cereal Chemistry, 83(1): 28-36, doi: 10.1094/CC-83-0028.
  • Moore, M. M., Juga, B., Schober, T. J., Arendt, E. K. (2007). Effect of lactic acid bacteria on properties of gluten‐free sourdoughs, batters, and quality and ultrastructure of gluten‐free bread. Cereal Chemistry, 84(4): 357-364, doi: 10.1094/CCHEM-84-4-0357.
  • Moroni, A.V., Bello, F.D., Arendt, E.K. (2009). Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiology, 26(7): 676– 684, doi: 10.1016/j.fm.2009.07.001.
  • Murray, J. A. (1999). The widening spectrum of coeliac disease. The American Journal of Clinical Nutrition, 69(3): 354-365, doi: 10.1093/ajcn/69.3.354.
  • Osorio-Díaz, P., Agama-Acevedo, E., Mendoza-Vinalay, M., Tovar, J., Bello-Pérez, L. A. (2008). Pasta added with chickpea flour: Chemical composition, in vitro starch digestibility and predicted glycemic index. Cienca e Tecnologia de Alimentos, 6(1): 6–12, doi: 10.1080/11358120809487621.
  • Reyes-Moreno, C., Paredes-Lopez, O. (1993). Hard-to-cook phenomenon in common beans – A review. Critical Review in Food Science and Nutrition, 33(3): 227–286, doi: 10.1080/10408399309527621.
  • Rizzello, C. G., Calasso, M., Campanella, D., De Angelis, M., Gobbetti, M. (2014). Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread. International Journal of Food Microbiology, 180: 78-87, doi: 10.1016/j.ijfoodmicro.2014.04.005.
  • Roosjen, J. (2005). Processing of Teff Flour. European patent specification, publication number WO, 25319(24.03), 2005.
  • Sacchetti, G., Pinnavaia, G.G., Guidolin, E. Dalla-Rosa, M. (2004). Effects of extrusion temperature and feed composition on the functional, physical and sensory properties of chestnut and rice flour-based snack-like products. Food Research International, 37(5): 527–534, doi: 10.1016/j.foodres.2003.11.009.
  • Sanchez, H. D., Osella, C. A., De La Torre, M. A. (2002). Optimization of gluten‐free bread prepared from cornstarch, rice flour, and cassava starch. Journal of Food Science, 67(1): 416-419, doi: 10.1111/j.1365-2621.2002.tb11420.x.
  • Sanchez, H. D., Osella, C. A., De La Torre, M. A. (2004). Use of response surface methodology to optimize gluten-free bread fortified with soy flour and dry milk. Food Science and Technology International, 10(1): 5-9.
  • Schober, T. J., Messerschmidt, M., Bean, S. R., Park, S. H., Arendt, E. K. (2005). Gluten‐free bread from sorghum: quality differences among hybrids. Cereal chemistry, 82(4): 394-404.
  • Sciarini, S. L., Ribotta, D. P., León, E. A., Pérez, T. G. (2008). Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food and Bioprocess Technology, 3(4): 577-585, doi:10.1007/s11947-008-0098-2. doi: 10.1094/CC-82-0394.
  • Shan, L., Molberg, O., Parrot, I., Hausch, F., Filiz, F., Gray, G. M., Sollid, L. M., Khosla, C. (2002). Structural basis for gluten intolerance in coeliac sprue. Science, 297(5590): 2275-2279, doi: 10.1126/science.1074129.
  • Singh, V., Okadome, H., Toyoshima, H., Isobe, S., Ohtsubo, K. I. (2000). Thermal and physicochemical properties of rice grain, flour and starch. Journal of Agricultural and Food Chemistry, 48(7): 2639-2647, doi: 10.1021/jf990374f.
  • Torbica, A., Hadnađev, M., Dapčević, T. (2010). Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocolloids, 24(6-7): 626-632, doi: 10.1016/j.foodhyd.2010.03.004.
  • Toufeili, I. M. A. D., Dagher, S. H. A. W. K. Y., Shadarevian, S. O. S. S. Y., Noureddine, A. B. I. R., Sarakbi, M., Farran, M. T. (1994). Formulation of gluten-free pocket-type flat breads: Optimization of methylcellulose, gum arabic, and egg albumen levels by response surface methodology. Cereal Chemistry, 71(6): 594-600.
  • Witczak, M., Ziobro, R., Juszczak, L., Korus, J. (2016). Starch and starch derivatives in gluten-free systems–A review. Journal of Cereal Science, 67: 46-57, doi: 10.1016/j.jcs.2015.07.007.
  • Zeleznak, K. J., Hoseney, R. C. (1987). The Glass Transition in Starch. Cereal Chemistry. 64(2): 121-124.

FARKLI UN BİLEŞİMLERİNİN TERMAL ÖZELLİKLERİ İLE GLİSEMİK İNDEKS DEĞERLERİNİN BELİRLENMESİ VE GLUTENSİZ EKMEK YAPIMINDAKİ PERFORMANSLARI

Yıl 2019, , 143 - 152, 15.02.2019
https://doi.org/10.15237/gida.GD18105

Öz

Çalışmanın amacı glutensiz
pirinç, kestane, nohut ve fasulye unlarının termal özellikleri ile tahmini
glisemik indeks değerlerinin belirlenmesidir. Bu kapsamda kestane, nohut ve
fasulye unları pirinç unu ile farklı oranlarda (0/100, 25/75, 50/50)
karıştırılarak glutensiz ekmekler üretilmiştir. Çalışmada direkt hamur metodu
kullanılmıştır. Çalışma sonuçları, fasulye ununun glisemik indeks değerinin
diğer unlara göre daha düşük olduğunu göstermiştir. Glutensiz ekmeklerin
tekstür analizi sonuçları, 8 günlük depolamanın sonunda en sert ekmeklerin
sırasıyla kestane-pirinç unundan (50:50) elde edilmiş ekmekler ve pirinç
unundan elde edilmiş ekmekler olduğunu göstermiştir. Kestane-pirinç unundan
(25:75) elde edilmiş ekmeklerin hacmi diğer glutensiz ekmeklerden daha yüksek
bulunmuştur. Yapılacak yeni çalışmalarda, özellikle glutensiz nohut ve fasulye
unlarından elde edilen ekmeklerin duyusal özelliklerinin geliştirilmesi üzerine
odaklanılması uygun olacaktır. 

Kaynakça

  • AACC, American Association of Cereal Chemists. (1995). Approved methods of the AACC. (9th ed.) Method 10-09.
  • AACC, American Association of Cereal Chemists. (2000). Approved methods of the AACC (10th ed.). Method 74-09.
  • AACC, American Association of Cereal Chemists. (2000). Approved Methods of the AACC. 10th Ed. Hagberg Falling Number Method 56-81b.
  • Angioloni, A., Collar, C. (2012). High legume-wheat matrices: an alternative to promote bread nutritional value meeting dough viscoelastic restrictions. European Food Research and Technology, 234(2): 273-284, doi: 10.1007/s00217-011-1637-z.
  • Annett, L. E., Muralidharan, V., Boxall, P. C., Cash, S. B., Wismer, W. V. (2008). Influence of health and environmental information on hedonic evaluation of organic and conventional bread. Journal of Food Science, 73(4): 50-57, doi: https://doi.org/10.1111/j.1750-3841.2008.00723.x.
  • Anton, A. A., Artfield, S. D. (2008). Hydrocolloids in gluten-free breads: a review. International Journal of Food Sciences and Nutrition, 59(1): 11-23, doi: 10.1080/09637480701625630.
  • Arocha Gularte, M., Gómez, M., Rosell, C. M. (2012). Impact of legume flours on quality and in vitro digestibility of starch and protein from gluten-free cakes. Food and Bioprocess Technology, 5(8): 3142–3150, doi: 10.1007/s11947-011-0642-3.
  • Attanasio, G., Cinquanta, L., Albanese, D., Di Matteo, M. (2004). Effects of drying temperatures on physico-chemical properties of dried and rehydrated chestnuts (Castanea sativa). Food Chemistry, 88(4): 583-590, doi: 10.1016/j.foodchem.2004.01.071.
  • Chenlo, F., Moreira, R., Pereira, G. Silva, C.C. (2007). Evaluation of the rheological behaviour of chestnut (castanea sativa mill) flour pastes as function of water content and temperature. Electronic Journal of Environmental Agriculture and Food Chemistry, 6: 1794–1802.
  • Chung, H. J., Liu, Q., Hoover, R., Warkentin, T. D., Vandenberg, B. (2008). In vitro starch digestibility, expected glycemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chemistry, 111(2): 316-321, doi: 10.1016/j.foodchem.2008.03.062.
  • Chung, H. J., Liu, Q., Pauls, K. P., Fan, M. Z., Yada, R. (2008). In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Research International, 41(9): 869-875, doi: 10.1016/j.foodres.2008.03.013.
  • Correia, P., Beirão-da-Costa, M. L. (2012). Effect of drying temperatures on starch-related functional and thermal properties of chestnut flours. Food and Bioproducts Processing, 90(2): 284-294, doi: 10.1016/j.fbp.2011.06.008.
  • Demirkesen, I., Mert, B., Şumnu, G., Şahin, S. (2010a). Utilization of chestnut flour in gluten-free bread formulations. Journal of Food Engineering, 101(3): 329-336, doi: 10.1016/j.jfoodeng.2010.07.017.
  • Demirkesen, I., Mert, B., Şumnu, G., Şahin, S. (2010b). Rheological properties of gluten-free bread formulations. Journal of food Engineering, 96(2): 295-303, doi: 10.1016/j.jfoodeng.2009.08.004.
  • Farrell, J. R., Kelly, P. C. (2002). Coeliac sprue. The New England Journal of Medicine, 346(3): 180-188. doi: 10.1056/NEJMra010852.
  • Fasano, A., Catassi, C. (2001). Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum. Gastroenterology, 120(3): 636-651, doi: 10.1053/gast.2001.22123.
  • Fasano, A. (2005). Clinical presentation of coeliac disease in the pediatric population. Gastroenterology, 128(4): 68-73, doi: 10.1053/j.gastro.2005.02.015.
  • Foster-Powell, K., Brand Miller, J. (1995). International tables of glycemic index. American Journal of Clinical Nutrition, 62(4): 871–893, doi: 10.1093/ajcn/62.4.871S.
  • Gallagher, E., Gormley, T. R. Arendt, E. K. (2003). Crust and crumb characteristics of gluten free breads. Journal of Food Engineering. 56(2-3): 153-161, doi: 10.1016/S0260-8774(02)00244-3.
  • Gallagher, E., Gormley, T. R., Arendt, E. K. (2004). Recent advances in the formulation of gluten-free cereal-based products. Trends in Food Science and Technology, 15(3-4): 143–152, doi: 10.1016/j.tifs.2003.09.012.
  • Gebremariam, M. M., Zarnkow, M., Becker, T. (2014). Teff (Eragrostis tef) as a raw material for malting, brewing and manufacturing of gluten-free foods and beverages: a review. Journal of Food Science and Technology, 51(11): 2881-2895, doi: 10.1007/s13197-012-.
  • Giuberti, G., Gallo, A., Cerioli, C., Fortunati, P., Masoero, F. (2015). Cooking quality and starch digestibility of gluten free pasta using new bean flour. Food Chemistry, 175: 43-49, doi: 10.1016/j.foodchem.2014.11.127.
  • Goñi, I., Garcia-Alonso, A., Saura-Calixto F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3): 427-37, doi: 10.1016/S0271-5317(97)00010-9.
  • Gujral, H. S., Rosell, C. M. (2004). Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Research International, 37(1): 75-81. doi: 10.1016/j.foodres.2003.08.001.
  • Hager, A. S., Arendt, E. K. (2013). Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocolloids, 32(1): 195-203, doi: 10.1016/j.foodhyd.2012.12.021.
  • Houben, A., Höchstötter, A., Becker, T. (2012). Possibilities to increase the quality in gluten-free bread production: an overview. European Food Research and Technology, 235(2): 195-208, doi: 10.1007/s00217-012-1720-0.
  • Haque, A., Morris, E. R. (1994). Combined use of ispaghula and HPMC to replace or augment gluten in breadmaking. Food Research International. 27(4): 379-393, doi: 10.1016/0963-9969(94)90194-5.
  • Kaur, M., Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 91(3): 403-411, doi: 10.1016/j.foodchem.2004.06.015.
  • Kim, H. J., White, P. J. (2012). In vitro digestion rate and estimated glycemic index of oat flours from typical and high β-glucan oat lines. Journal of Agricultural and Food Chemistry, 60(20): 5237-5242, doi: 10.1021/jf300429u.
  • Kohajdová, Z., Karovičová, J., Magala, M. (2013). Effect of lentil and bean flours on rheological and baking properties of wheat dough. Chemical Papers, 67(4): 398-407, doi: 10.2478/s11696-012-0295-3.
  • Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., Biliaderis, C. G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3): 1033-1047, doi: 10.1016/j.jfoodeng.2006.03.032.
  • López, A. C. B., Pereira, A. J. G., Junqueira, R. G. (2004). Flour mixture of rice flour, corn and cassava starch in the production of gluten-free white bread. Brazilian Archives of Biology and Technology, 47(1): 63-70, doi: 10.1590/S1516-89132004000100009.
  • McCarthy, D. F., Gallagher, E., Gormley, T. R., Schober, T. J., Arendt, E. K. (2005). Application of response surface methodology in the development of gluten‐free bread. Cereal Chemistry, 82(5): 609-615, doi: 10.1094/CC-82-0609.
  • Miñarro, B., Albanell, E., Aguilar, N., Guamis, B., Capellas, M. (2012). Effect of legume flours on baking characteristics of gluten-free bread. Journal of Cereal Science, 56(2): 476-481, doi: 10.1016/j.jcs.2012.04.012.
  • Moore, M. M., Heinbockel, M., Dockery, P., Ulmer, H. M., Arendt, E. K. (2006). Network formation in gluten‐free bread with application of transglutaminase. Cereal Chemistry, 83(1): 28-36, doi: 10.1094/CC-83-0028.
  • Moore, M. M., Juga, B., Schober, T. J., Arendt, E. K. (2007). Effect of lactic acid bacteria on properties of gluten‐free sourdoughs, batters, and quality and ultrastructure of gluten‐free bread. Cereal Chemistry, 84(4): 357-364, doi: 10.1094/CCHEM-84-4-0357.
  • Moroni, A.V., Bello, F.D., Arendt, E.K. (2009). Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiology, 26(7): 676– 684, doi: 10.1016/j.fm.2009.07.001.
  • Murray, J. A. (1999). The widening spectrum of coeliac disease. The American Journal of Clinical Nutrition, 69(3): 354-365, doi: 10.1093/ajcn/69.3.354.
  • Osorio-Díaz, P., Agama-Acevedo, E., Mendoza-Vinalay, M., Tovar, J., Bello-Pérez, L. A. (2008). Pasta added with chickpea flour: Chemical composition, in vitro starch digestibility and predicted glycemic index. Cienca e Tecnologia de Alimentos, 6(1): 6–12, doi: 10.1080/11358120809487621.
  • Reyes-Moreno, C., Paredes-Lopez, O. (1993). Hard-to-cook phenomenon in common beans – A review. Critical Review in Food Science and Nutrition, 33(3): 227–286, doi: 10.1080/10408399309527621.
  • Rizzello, C. G., Calasso, M., Campanella, D., De Angelis, M., Gobbetti, M. (2014). Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread. International Journal of Food Microbiology, 180: 78-87, doi: 10.1016/j.ijfoodmicro.2014.04.005.
  • Roosjen, J. (2005). Processing of Teff Flour. European patent specification, publication number WO, 25319(24.03), 2005.
  • Sacchetti, G., Pinnavaia, G.G., Guidolin, E. Dalla-Rosa, M. (2004). Effects of extrusion temperature and feed composition on the functional, physical and sensory properties of chestnut and rice flour-based snack-like products. Food Research International, 37(5): 527–534, doi: 10.1016/j.foodres.2003.11.009.
  • Sanchez, H. D., Osella, C. A., De La Torre, M. A. (2002). Optimization of gluten‐free bread prepared from cornstarch, rice flour, and cassava starch. Journal of Food Science, 67(1): 416-419, doi: 10.1111/j.1365-2621.2002.tb11420.x.
  • Sanchez, H. D., Osella, C. A., De La Torre, M. A. (2004). Use of response surface methodology to optimize gluten-free bread fortified with soy flour and dry milk. Food Science and Technology International, 10(1): 5-9.
  • Schober, T. J., Messerschmidt, M., Bean, S. R., Park, S. H., Arendt, E. K. (2005). Gluten‐free bread from sorghum: quality differences among hybrids. Cereal chemistry, 82(4): 394-404.
  • Sciarini, S. L., Ribotta, D. P., León, E. A., Pérez, T. G. (2008). Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food and Bioprocess Technology, 3(4): 577-585, doi:10.1007/s11947-008-0098-2. doi: 10.1094/CC-82-0394.
  • Shan, L., Molberg, O., Parrot, I., Hausch, F., Filiz, F., Gray, G. M., Sollid, L. M., Khosla, C. (2002). Structural basis for gluten intolerance in coeliac sprue. Science, 297(5590): 2275-2279, doi: 10.1126/science.1074129.
  • Singh, V., Okadome, H., Toyoshima, H., Isobe, S., Ohtsubo, K. I. (2000). Thermal and physicochemical properties of rice grain, flour and starch. Journal of Agricultural and Food Chemistry, 48(7): 2639-2647, doi: 10.1021/jf990374f.
  • Torbica, A., Hadnađev, M., Dapčević, T. (2010). Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocolloids, 24(6-7): 626-632, doi: 10.1016/j.foodhyd.2010.03.004.
  • Toufeili, I. M. A. D., Dagher, S. H. A. W. K. Y., Shadarevian, S. O. S. S. Y., Noureddine, A. B. I. R., Sarakbi, M., Farran, M. T. (1994). Formulation of gluten-free pocket-type flat breads: Optimization of methylcellulose, gum arabic, and egg albumen levels by response surface methodology. Cereal Chemistry, 71(6): 594-600.
  • Witczak, M., Ziobro, R., Juszczak, L., Korus, J. (2016). Starch and starch derivatives in gluten-free systems–A review. Journal of Cereal Science, 67: 46-57, doi: 10.1016/j.jcs.2015.07.007.
  • Zeleznak, K. J., Hoseney, R. C. (1987). The Glass Transition in Starch. Cereal Chemistry. 64(2): 121-124.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Aslı Yıldırım Bu kişi benim

Hilal Şahin Nadeem

Yayımlanma Tarihi 15 Şubat 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Yıldırım, A., & Şahin Nadeem, H. (2019). THERMAL PROPERTIES AND ESTIMATED GLYCEMIC INDEX OF DIFFERENT COMPOSITE FLOURS AND THEIR GLUTEN-FREE BREAD MAKING PERFORMANCES. Gıda, 44(1), 143-152. https://doi.org/10.15237/gida.GD18105
AMA Yıldırım A, Şahin Nadeem H. THERMAL PROPERTIES AND ESTIMATED GLYCEMIC INDEX OF DIFFERENT COMPOSITE FLOURS AND THEIR GLUTEN-FREE BREAD MAKING PERFORMANCES. GIDA. Şubat 2019;44(1):143-152. doi:10.15237/gida.GD18105
Chicago Yıldırım, Aslı, ve Hilal Şahin Nadeem. “THERMAL PROPERTIES AND ESTIMATED GLYCEMIC INDEX OF DIFFERENT COMPOSITE FLOURS AND THEIR GLUTEN-FREE BREAD MAKING PERFORMANCES”. Gıda 44, sy. 1 (Şubat 2019): 143-52. https://doi.org/10.15237/gida.GD18105.
EndNote Yıldırım A, Şahin Nadeem H (01 Şubat 2019) THERMAL PROPERTIES AND ESTIMATED GLYCEMIC INDEX OF DIFFERENT COMPOSITE FLOURS AND THEIR GLUTEN-FREE BREAD MAKING PERFORMANCES. Gıda 44 1 143–152.
IEEE A. Yıldırım ve H. Şahin Nadeem, “THERMAL PROPERTIES AND ESTIMATED GLYCEMIC INDEX OF DIFFERENT COMPOSITE FLOURS AND THEIR GLUTEN-FREE BREAD MAKING PERFORMANCES”, GIDA, c. 44, sy. 1, ss. 143–152, 2019, doi: 10.15237/gida.GD18105.
ISNAD Yıldırım, Aslı - Şahin Nadeem, Hilal. “THERMAL PROPERTIES AND ESTIMATED GLYCEMIC INDEX OF DIFFERENT COMPOSITE FLOURS AND THEIR GLUTEN-FREE BREAD MAKING PERFORMANCES”. Gıda 44/1 (Şubat 2019), 143-152. https://doi.org/10.15237/gida.GD18105.
JAMA Yıldırım A, Şahin Nadeem H. THERMAL PROPERTIES AND ESTIMATED GLYCEMIC INDEX OF DIFFERENT COMPOSITE FLOURS AND THEIR GLUTEN-FREE BREAD MAKING PERFORMANCES. GIDA. 2019;44:143–152.
MLA Yıldırım, Aslı ve Hilal Şahin Nadeem. “THERMAL PROPERTIES AND ESTIMATED GLYCEMIC INDEX OF DIFFERENT COMPOSITE FLOURS AND THEIR GLUTEN-FREE BREAD MAKING PERFORMANCES”. Gıda, c. 44, sy. 1, 2019, ss. 143-52, doi:10.15237/gida.GD18105.
Vancouver Yıldırım A, Şahin Nadeem H. THERMAL PROPERTIES AND ESTIMATED GLYCEMIC INDEX OF DIFFERENT COMPOSITE FLOURS AND THEIR GLUTEN-FREE BREAD MAKING PERFORMANCES. GIDA. 2019;44(1):143-52.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/