Araştırma Makalesi
BibTex RIS Kaynak Göster

NOHUT PROTEİNİ İZOLATI VE PEKTİNİN KOMPLEKS KOASERVASYONU: BİYOPOLİMER ORANI VE pH’NIN ETKİSİ

Yıl 2022, Cilt: 47 Sayı: 6, 971 - 979, 15.12.2022
https://doi.org/10.15237/gida.GD22069

Öz

Kompleks koaservasyon, farmasötik, gıda, tarım ve tekstil endüstrilerinde yaygın olarak kullanılan, oldukça destekleyici bir kapsülleme tekniğidir. Bu çalışmada, nohut protein izolatı (NPİ) ve pektin (PK) arasındaki kompleksleşme üzerinde biyopolimer oranı ve pH'ın etkisi zeta potansiyeli, bulanıklık ölçümü ve görsel gözlemler kullanılarak araştırılmıştır. Pektin, pH 2-9 arasında negatif yük profili göstermiştir. Nohut protein izolatının izoelektrik noktası 4.5 (pI) olarak bulunmuştur. Çözülebilir kompleksler pH’ları NPİ’nin izoelektirik noktasının pozitif, pektininin de negatif yük taşıdığı sistemde oluşmuştur. Kompleks koaservat oluşumunun 4:1(NPİ:PK) biyopolimer oranı ile pH 3.1'de gerçekleştiği gözlemlenmiştir. Bulanıklık ve görsel görünüm, NPİ-PK koaservatlarında daha büyük agregatların oluştuğunu ortaya koymuştur. Bulunan sonuçlar fonksiyonel gıdalar ve biyomalzemelerde kullanım için pH'ya duyarlı biyopolimer taşıyıcıların geliştirilmesine yardımcı olabilir.

Kaynakça

  • Boukid, F. (2021). Chickpea (Cicer arietinum L.) protein as a prospective plant-based ingredient: a review. https://doi.org/10.1111/ijfs.15046
  • De Kruif, C. G., Weinbreck, F., & De Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9(5), 340–349. https://doi.org/10.1016/J.COCIS.2004.09.006
  • E. Flanagan, S., J. Malanowski, A., Kizilay, E., Seeman, D., L. Dubin, P., Donato-Capel, L., Bovetto, L., & Schmitt, C. (2015). Complex Equilibria, Speciation, and Heteroprotein Coacervation of Lactoferrin and β-Lactoglobulin. Langmuir, 31(5), 1776–1783. https://doi.org/10.1021/la504020e
  • Elmer, C., Karaca, A. C., Low, N. H., & Nickerson, M. T. (2011). Complex coacervation in pea protein isolate–chitosan mixtures. Food Research International, 44(5), 1441–1446. https://doi.org/10.1016/J.FOODRES.2011.03.011
  • Freitas, M. L. F., Albano, K. M., & Telis, V. R. N. (2017). Characterization of biopolymers and soy protein isolate-high-methoxyl pectin complex. Polímeros, 27(1), 62–67. https://doi.org/10.1590/0104-1428.2404
  • Gulão, E. da S., de Souza, C. J. F., da Silva, F. A. S., Coimbra, J. S. R., & Garcia-Rojas, E. E. (2014). Complex coacervates obtained from lactoferrin and gum arabic: Formation and characterization. Food Research International, 65(PC), 367–374. https://doi.org/10.1016/J.FOODRES.2014.08.024
  • Huang, G. Q., Sun, Y. T., Xiao, J. X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534–539. https://doi.org/10.1016/J.FOODCHEM.2012.04.140
  • Joshi, N., Rawat, K., & Bohidar, H. B. (2018). pH and ionic strength induced complex coacervation of Pectin and Gelatin A. Food Hydrocolloids, 74, 132–138. https://doi.org/10.1016/J.FOODHYD.2017.08.011
  • Kayitmazer, A. B. (2017). Thermodynamics of complex coacervation. Advances in Colloid and Interface Science, 239, 169–177. https://doi.org/10.1016/J.CIS.2016.07.006
  • Ladjal-Ettoumi, Y., Boudries, H., Chibane, M., & Romero, A. (n.d.). Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. https://doi.org/10.1007/s11483-015-9411-6
  • Lan, Y., Ohm, J.-B., Chen, B., & Rao, J. (2020). Phase behavior, thermodynamic and microstructure of concentrated pea protein isolate-pectin mixture: Effect of pH, biopolymer ratio and pectin charge density. Food Hydrocolloids, 101, 105556. https://doi.org/10.1016/J.FOODHYD.2019.105556
  • Moser, P., Ferreira, S., & Nicoletti, V. R. (2019). Buriti oil microencapsulation in chickpea protein-pectin matrix as affected by spray drying parameters. Food and Bioproducts Processing, 117, 183–193. https://doi.org/10.1016/J.FBP.2019.07.009
  • Moser, P., Nicoletti, V. R., Drusch, S., & Brückner-Gühmann, M. (2020). Functional properties of chickpea protein-pectin interfacial complex in buriti oil emulsions and spray dried microcapsules. Food Hydrocolloids, 107, 105929. https://doi.org/10.1016/J.FOODHYD.2020.105929
  • Mousazadeh, M., Mousavi, M., Askari, G., Kiani, H., Adt, I., & Gharsallaoui, A. (2018). Thermodynamic and physiochemical insights into chickpea protein-Persian gum interactions and environmental effects. International Journal of Biological Macromolecules, 119, 1052–1058. https://doi.org/10.1016/J.IJBIOMAC.2018.07.168
  • Raei, M., Rafe, A., & Shahidi, F. (2018). Rheological and structural characteristics of whey protein-pectin complex coacervates. Journal of Food Engineering, 228, 25–31. https://doi.org/10.1016/J.JFOODENG.2018.02.007
  • Sá, A. G. A., Moreno, Y. M. F., & Carciofi, B. A. M. (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology, 97, 170–184. https://doi.org/10.1016/J.TIFS.2020.01.011
  • Sarabi-Aghdam, V., Mousavi, M., Hamishehkar, H., Kiani, H., Emam-Djomeh, Z., Mirarab Razi, S., & Rashidinejad, A. (2021). Utilization of chickpea protein isolate and Persian gum for microencapsulation of licorice root extract towards its incorporation into functional foods. Food Chemistry, 362, 130040. https://doi.org/10.1016/J.FOODCHEM.2021.130040
  • Souza, C. J. F., da Costa, A. R., Souza, C. F., Tosin, F. F. S., & Garcia-Rojas, E. E. (2018). Complex coacervation between lysozyme and pectin: Effect of pH, salt, and biopolymer ratio. International Journal of Biological Macromolecules, 107(PartA), 1253–1260. https://doi.org/10.1016/J.IJBIOMAC.2017.09.104
  • Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276–1286. https://doi.org/10.1016/J.IJBIOMAC.2018.10.144
  • Wang, Y., Wang, Y., Li, K., Bai, Y., Li, B., & Xu, W. (2020). Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. LWT, 129, 109563. https://doi.org/10.1016/J.LWT.2020.109563
  • Wu, B., & McClements, D. J. (2015). Modulating the morphology of hydrogel particles by thermal annealing: mixed biopolymer electrostatic complexes. Journal of Physics D: Applied Physics, 48(43), 434002. https://doi.org/10.1088/0022-3727/48/43/434002
  • Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., & Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260–267. https://doi.org/10.1016/J.FOODRES.2018.04.044
  • Xiong, W., Li, Y., Ren, C., Li, J., Li, B., & Geng, F. (2021). Thermodynamic parameters of gelatin-pectin complex coacervation. Food Hydrocolloids, 120, 106958. https://doi.org/10.1016/J.FOODHYD.2021.106958
  • Xu, L., yan, W., Zhang, M., Hong, X., Liu, Y., & Li, J. (2021). Application of ultrasound in stabilizing of Antarctic krill oil by modified chickpea protein isolate and ginseng saponin. LWT, 149, 111803. https://doi.org/10.1016/J.LWT.2021.111803
  • Ye, A. (2008). Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications-a review. https://doi.org/10.1111/j.1365-2621.2006.01454.x

COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND pH

Yıl 2022, Cilt: 47 Sayı: 6, 971 - 979, 15.12.2022
https://doi.org/10.15237/gida.GD22069

Öz

Complex coacervation is an up-and-coming encapsulation technique widely working in the medicinal, food, agriculture, and textile industries. This study investigated the effect of biopolymer ratio and pH on the complexation between chickpea protein isolate (CPI) and pectin (PC) through zeta potential, turbidity measurement, and visual observations. Pectin showed a negative charge profile between pH 2-9. The isoelectric point of the chickpea protein isolate was found as 4.5 (pI). Soluble complexes were formed in the system with pHs below the pI of CPI with positive charges, whereas PC had negative ones. Complex coacervates formed at pH 3.1 with a 4:1(CPI: PC) biopolymer ratio. The turbidity and visual appearance revealed that larger aggregates were formed in CPI-PC coacervates. The findings could help in the development of pH-sensitive biopolymer carriers for use in functional foods and biomaterials.

Kaynakça

  • Boukid, F. (2021). Chickpea (Cicer arietinum L.) protein as a prospective plant-based ingredient: a review. https://doi.org/10.1111/ijfs.15046
  • De Kruif, C. G., Weinbreck, F., & De Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9(5), 340–349. https://doi.org/10.1016/J.COCIS.2004.09.006
  • E. Flanagan, S., J. Malanowski, A., Kizilay, E., Seeman, D., L. Dubin, P., Donato-Capel, L., Bovetto, L., & Schmitt, C. (2015). Complex Equilibria, Speciation, and Heteroprotein Coacervation of Lactoferrin and β-Lactoglobulin. Langmuir, 31(5), 1776–1783. https://doi.org/10.1021/la504020e
  • Elmer, C., Karaca, A. C., Low, N. H., & Nickerson, M. T. (2011). Complex coacervation in pea protein isolate–chitosan mixtures. Food Research International, 44(5), 1441–1446. https://doi.org/10.1016/J.FOODRES.2011.03.011
  • Freitas, M. L. F., Albano, K. M., & Telis, V. R. N. (2017). Characterization of biopolymers and soy protein isolate-high-methoxyl pectin complex. Polímeros, 27(1), 62–67. https://doi.org/10.1590/0104-1428.2404
  • Gulão, E. da S., de Souza, C. J. F., da Silva, F. A. S., Coimbra, J. S. R., & Garcia-Rojas, E. E. (2014). Complex coacervates obtained from lactoferrin and gum arabic: Formation and characterization. Food Research International, 65(PC), 367–374. https://doi.org/10.1016/J.FOODRES.2014.08.024
  • Huang, G. Q., Sun, Y. T., Xiao, J. X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534–539. https://doi.org/10.1016/J.FOODCHEM.2012.04.140
  • Joshi, N., Rawat, K., & Bohidar, H. B. (2018). pH and ionic strength induced complex coacervation of Pectin and Gelatin A. Food Hydrocolloids, 74, 132–138. https://doi.org/10.1016/J.FOODHYD.2017.08.011
  • Kayitmazer, A. B. (2017). Thermodynamics of complex coacervation. Advances in Colloid and Interface Science, 239, 169–177. https://doi.org/10.1016/J.CIS.2016.07.006
  • Ladjal-Ettoumi, Y., Boudries, H., Chibane, M., & Romero, A. (n.d.). Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. https://doi.org/10.1007/s11483-015-9411-6
  • Lan, Y., Ohm, J.-B., Chen, B., & Rao, J. (2020). Phase behavior, thermodynamic and microstructure of concentrated pea protein isolate-pectin mixture: Effect of pH, biopolymer ratio and pectin charge density. Food Hydrocolloids, 101, 105556. https://doi.org/10.1016/J.FOODHYD.2019.105556
  • Moser, P., Ferreira, S., & Nicoletti, V. R. (2019). Buriti oil microencapsulation in chickpea protein-pectin matrix as affected by spray drying parameters. Food and Bioproducts Processing, 117, 183–193. https://doi.org/10.1016/J.FBP.2019.07.009
  • Moser, P., Nicoletti, V. R., Drusch, S., & Brückner-Gühmann, M. (2020). Functional properties of chickpea protein-pectin interfacial complex in buriti oil emulsions and spray dried microcapsules. Food Hydrocolloids, 107, 105929. https://doi.org/10.1016/J.FOODHYD.2020.105929
  • Mousazadeh, M., Mousavi, M., Askari, G., Kiani, H., Adt, I., & Gharsallaoui, A. (2018). Thermodynamic and physiochemical insights into chickpea protein-Persian gum interactions and environmental effects. International Journal of Biological Macromolecules, 119, 1052–1058. https://doi.org/10.1016/J.IJBIOMAC.2018.07.168
  • Raei, M., Rafe, A., & Shahidi, F. (2018). Rheological and structural characteristics of whey protein-pectin complex coacervates. Journal of Food Engineering, 228, 25–31. https://doi.org/10.1016/J.JFOODENG.2018.02.007
  • Sá, A. G. A., Moreno, Y. M. F., & Carciofi, B. A. M. (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology, 97, 170–184. https://doi.org/10.1016/J.TIFS.2020.01.011
  • Sarabi-Aghdam, V., Mousavi, M., Hamishehkar, H., Kiani, H., Emam-Djomeh, Z., Mirarab Razi, S., & Rashidinejad, A. (2021). Utilization of chickpea protein isolate and Persian gum for microencapsulation of licorice root extract towards its incorporation into functional foods. Food Chemistry, 362, 130040. https://doi.org/10.1016/J.FOODCHEM.2021.130040
  • Souza, C. J. F., da Costa, A. R., Souza, C. F., Tosin, F. F. S., & Garcia-Rojas, E. E. (2018). Complex coacervation between lysozyme and pectin: Effect of pH, salt, and biopolymer ratio. International Journal of Biological Macromolecules, 107(PartA), 1253–1260. https://doi.org/10.1016/J.IJBIOMAC.2017.09.104
  • Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276–1286. https://doi.org/10.1016/J.IJBIOMAC.2018.10.144
  • Wang, Y., Wang, Y., Li, K., Bai, Y., Li, B., & Xu, W. (2020). Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. LWT, 129, 109563. https://doi.org/10.1016/J.LWT.2020.109563
  • Wu, B., & McClements, D. J. (2015). Modulating the morphology of hydrogel particles by thermal annealing: mixed biopolymer electrostatic complexes. Journal of Physics D: Applied Physics, 48(43), 434002. https://doi.org/10.1088/0022-3727/48/43/434002
  • Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., & Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260–267. https://doi.org/10.1016/J.FOODRES.2018.04.044
  • Xiong, W., Li, Y., Ren, C., Li, J., Li, B., & Geng, F. (2021). Thermodynamic parameters of gelatin-pectin complex coacervation. Food Hydrocolloids, 120, 106958. https://doi.org/10.1016/J.FOODHYD.2021.106958
  • Xu, L., yan, W., Zhang, M., Hong, X., Liu, Y., & Li, J. (2021). Application of ultrasound in stabilizing of Antarctic krill oil by modified chickpea protein isolate and ginseng saponin. LWT, 149, 111803. https://doi.org/10.1016/J.LWT.2021.111803
  • Ye, A. (2008). Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications-a review. https://doi.org/10.1111/j.1365-2621.2006.01454.x
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Eda Adal 0000-0003-1258-806X

Erken Görünüm Tarihi 19 Ekim 2022
Yayımlanma Tarihi 15 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 47 Sayı: 6

Kaynak Göster

APA Adal, E. (2022). COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND pH. Gıda, 47(6), 971-979. https://doi.org/10.15237/gida.GD22069
AMA Adal E. COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND pH. GIDA. Aralık 2022;47(6):971-979. doi:10.15237/gida.GD22069
Chicago Adal, Eda. “COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND PH”. Gıda 47, sy. 6 (Aralık 2022): 971-79. https://doi.org/10.15237/gida.GD22069.
EndNote Adal E (01 Aralık 2022) COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND pH. Gıda 47 6 971–979.
IEEE E. Adal, “COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND pH”, GIDA, c. 47, sy. 6, ss. 971–979, 2022, doi: 10.15237/gida.GD22069.
ISNAD Adal, Eda. “COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND PH”. Gıda 47/6 (Aralık 2022), 971-979. https://doi.org/10.15237/gida.GD22069.
JAMA Adal E. COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND pH. GIDA. 2022;47:971–979.
MLA Adal, Eda. “COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND PH”. Gıda, c. 47, sy. 6, 2022, ss. 971-9, doi:10.15237/gida.GD22069.
Vancouver Adal E. COMPLEX COACERVATION OF CHICKPEA PROTEIN ISOLATE AND PECTIN: EFFECT OF BIOPOLYMER RATIO AND pH. GIDA. 2022;47(6):971-9.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/