The current study focused on characteristic attributes of protein concentrate obtained from oil-free cottonseed. For this, the physicochemical properties namely moisture content, water activity, color, flowability, wettability, and protein solubility of cottonseed protein concentrate (CSPC) were investigated. Water holding capacity (WHC), oil binding capacity (OBC), foaming capacity, foam stability (10 and 30 min), emulsion activity index (EAI) and emulsion stability index (ESI) (10 and 30 min) of proteins were 2.75 g water/g protein, 2.59 g oil/g protein, 29.00%, 93.10% - 69.05%, 6.25 m2/g and 29.27-87.81 min, respectively. Bands regarding CSPC in the 45 kDa molecular weight were detected by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) patterns. Fourier-transform infrared spectroscopy (FTIR) was used to verify the protein-specific structures. Sheet structures in the surface morphology of CSPC were dominant when scanning electron microscopy (SEM) images were investigated. Thermal gravimetric analyzer (TGA) results showed that the protein concentrate exhibited excellent stability to temperature.
Astráin-Redín, L., Moya, J., Alejandre, M., Beitia, E., Raso, J., Calvo, B., Cebrian, G., Álvarez, I. (2022). Improving the microbial inactivation uniformity of pulsed electric field ohmic heating treatments of solid products. LWT - Food Science and Technology, 154, 112709. https://doi.org/10.1016/j.lwt.2021.112709
Bagade, S. B., Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: Critical Reviews İn Analytical Chemistry, 51(2), 138-149. 10.1080/10408347.2019.1686966
Barros, M., Redondo, L., Rego, D., Serra, C., Miloudi, K. (2022). Extraction of Essential Oils from Plants by Hydrodistillation with Pulsed Electric Fields (PEF) Pre-Treatment. Applied Sciences, 12(16). https://doi.org/10.3390/app12168107
Bazhal, M., Lebovka, N., Vorobiev, E. (2003). Optimisation of Pulsed Electric Field Strength for Electroplasmolysis of Vegetable Tissues. Biosystems Engineering, 86(3), 339–345. https://doi.org/10.1016/S1537-5110(03)00139-9
Bhattacharjee, C., Saxena, V. K., Dutta, S. (2019). Novel thermal and non-thermal processing of watermelon juice. Trends in Food Science & Technology, 93(2019), 234-243. https://doi.org/10.1016/j.tifs.2019.09.015
Bliesener, K.M., Miehe, D., Buchholz, K., (1991a). Process development in the dewatering of cossettes. Zuckerindustrie, 116 (11), 978–986.
Bocker R., Eric Keven Silva E.K. (2022). Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices, Food Chemistry: X, 15, 100398. https://doi.org/10.1016/j.fochx.2022.100398
Chaves, J. O., De Souza, M. C., Da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, Carneiro T. F., Espinosa, M.V., Peredo A.V.G., Barbero G.F., Rostagno, M. A. (2020). Extraction of flavonoids from natural sources using modern techniques. Frontiers in Chemistry, 8, 507887. https://doi.org/10.3389/fchem.2020.507887
Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., AbertVian, M., (2017). Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
Dastangoo, S., Hamed Mosavian, M. T., Yeganehzad, S. (2020). Optimization of pulsed electric field conditions for sugar extraction from carrots. Food Science & Nutrition, 8(4), 2025-2034. https://doi.org/10.1002/fsn3.1490
Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., Gao, Z.J., Xiao, H. W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes. Critical Reviews İn Food Science And Nutrition, 59(9), 1408-1432. doi: 10.1080/10408398.2017.1409192
Duan, H., Yan, X., Azarakhsh, N., Huang, X., Wang, C. (2022). Effects of high‐pressure pretreatment on acid extraction of pectin from pomelo peel. International Journal of Food Science and Technology, 57(8), 5239-5249. https://doi.org/10.1111/ijfs.15840
Einarsdóttir, R., Þórarinsdóttir, K.A., Aðalbjörnsson, B.V., Guðmundsson M., Marteinsdóttir, G., Kristbergsson K. (2022). Extraction of bioactive compounds from Alaria esculenta with pulsed electric field. Journal of Applied Phycology, 34, 597–608. https://doi.org/10.1007/s10811-021-02624-8
El Belghiti, K., Vorobiev, E. (2004). Mass transfer of sugar from beets enhanced by pulsed electric field. Food and Bioproducts Processing, 82(3C), 226–230. https://doi.org/10.1205/fbio.82.3.226.44187
El-Belghiti, K., Rabhi, Z., Vorobiev, E. (2005). Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field. Journal of the Science of Food and Agriculture, 85(2), 213–218. https://doi.org/10.1002/jsfa.1944
Eshtiaghi, M. N., Knorr, D. (2002). High electric field pulse pretreatment: Potential for sugar beet processing. Journal of Food Engineering, 52(3), 265–272. https://doi.org/10.1016/S0260-8774(01)00114-5
Fincan, M. (2015). Extractability of phenolics from spearmint treated with pulsed electric field. Journal of Food Engineering, 162(2015), 31-37. https://doi.org/10.1016/j.jfoodeng.2015.04.004
Fincan, M., DeVito, F., Dejmek, P. (2004). Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. Journal of Food Engineering, 64(3), 381–388. https://doi.org/10.1016/J.JFOODENG.2003.11.006
Fu, X., Zhao, Z., Yu, S., Chen, W., Wang, J. (2013). The ultrasonic-assisted extraction of sugar from sugar beet cossettes. International Sugar Journal, 115(1378), 692-696.
Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S. M. T., Radojčin, M., Putnik, P., Bursać Kovačević, D. (2018). Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. Journal of Food Process Engineering, 41(1), https://doi.org/10.1111/jfpe.12638
Genovese, J., Kranjc, M., Serša, I., Petracci, M., Rocculi, P., Miklavčič, D., & Mahnič-Kalamiza, S. (2021). PEF-treated plant and animal tissues: Insights by approaching with different electroporation assessment methods. Innovative Food Science & Emerging Technologies, 74, 102872. https://doi.org/10.1016/j.ifset.2021.102872
Ghosh, D., Saluja, N., Singh, T. G. (2019). A critical analysis of electroporation in medical technology. International Journal of Pharmaceutical Sciences and Research, 10(1), 23-28. http://dx.doi.org/10.13040/IJPSR.0975-8232.10(1).23-28
Giteru, S. G., Oey, I., Ali, M. A. (2018). Feasibility of using pulsed electric fields to modify biomacromolecules: A review. Trends in Food Science & Technology, 72, 91-113. https://doi.org/10.1016/j.tifs.2017.12.009
Guionet, A., Fujiwara, T., Sato, H., Takahashi, K., Takaki, K., Matsui, M., Tanino, T., Ohshima T. (2021). Pulsed electric fields act on tryptophan to inactivate α-amylase, Journal of Electrostatics, 112, 103597. https://doi.org/10.1016/j.elstat.2021.103597
Jemai, A. B., Vorobiev, E. (2003). Enhanced leaching from sugar beet cossettes by pulsed electric field. Journal of Food Engineering, 59(4), 405–412. https://doi.org/10.1016/S0260-8774(02)00499-5
Jiang, Y., Xing, M., Kang, Q., Sun, J., Zeng, X. A., Gao, W., Li H., Gao, Y., Li, A. (2022). Pulse electric field assisted process for extraction of Jiuzao glutelin extract and its physicochemical properties and biological activities investigation. Food Chemistry, 383, 132304. https://doi.org/10.1016/j.foodchem.2022.132304
Kantala, C., Supasin, S., Intra, P., Rattanadecho, P. (2022) Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice. Foods, 11(8). https://doi.org/10.3390/foods11081102
Khan, M. I. H., Nagy, S. A., Karim, M. A. (2018). Transport of cellular water during drying: An understanding of cell rupturing mechanism in apple tissue. Food Research International, 105, 772–781. https://doi.org/10.1016/j.foodres.2017.12.010
Knorr, D., Angersbach, A. (1998). Impact of high-intensity electrical field pulses on plant membrane permeabilization. Trends Food Science and Technology, 9, 185–191. https://doi.org/10.1016/S0924-2244(98)00040-5
Kumar, K., Srivastav, S., Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325
Lebovka, N. I., Shynkaryk, M. V., El-Belghiti, K., Benjelloun, H., & Vorobiev, E. (2007). Plasmolysis of sugarbeet: Pulsed electric fields and thermal treatment. Journal of Food Engineering, 80(2), 639–644. https://doi.org/10.1016/j.jfoodeng.2006.06.020
Li, Y., Zhang, Z., Paciulli, M. and Abbaspourrad, A. (2020), Extraction of phycocyanin—A natural blue colorant from dried spirulina biomass: Influence of processing parameters and extraction techniques. Journal of Food Science, 85, 727-735. https://doi.org/10.1111/1750-3841.14842
Limsangouan, N., Charunuch, C., Sastry, S. K., Srichamnong, W., Jittanit, W. (2020). High pressure processing of tamarind (Tamarindus indica) seed for xyloglucan extraction. LWT - Food Science and Technology, 134, 110112. https://doi.org/10.1016/j.lwt.2020.110112
Loginova, K. V., Vorobiev, E., Bals, O., Lebovka, N. I. (2011). Pilot study of countercurrent cold and mild heat extraction of sugar from sugar beets, assisted by pulsed electric fields. Journal of Food Engineering, 102(4), 340–347. https://doi.org/10.1016/j.jfoodeng.2010.09.010
Loginova, K., Loginov, M., Vorobiev, E., Lebovka, N. I. (2011). Quality and filtration characteristics of sugar beet juice obtained by “cold” extraction assisted by pulsed electric field. Journal of Food Engineering, 106(2), 144–151. https://doi.org/10.1016/j.jfoodeng.2011.04.017
Loginova, K., Loginov, M., Vorobiev, E., Lebovka, N. I. (2012). Better lime purification of sugar beet juice obtained by low temperature aqueous extraction assisted by pulsed electric field. LWT - Food Science and Technology, 46(1), 371–374. https://doi.org/10.1016/j.lwt.2011.10.005
López, N., Puértolas, E., Condón, S., Raso, J., Ignacio, Á. (2009). Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT - Food Science and Technology, 42(10), 1674–1680. https://doi.org/10.1016/j.lwt.2009.05.015
Mahn, A., Comett, R., Segura-Ponce, L. A., Díaz-Álvarez, R. E. (2022). Effect of pulsed electric field-assisted extraction on recovery of sulforaphane from broccoli florets. Journal of Food Process Engineering, 45(7). https://doi.org/10.1111/jfpe.13837
Manzoor, M. F., Zeng, X. A., Ahmad, N., Ahmed, Z., Rehman, A., Aadil, R. M., Roobab, U., Siddique, R., Rahaman, A. (2020). Effect of pulsed electric field and thermal treatments on the bioactive compounds, enzymes, microbial, and physical stability of almond milk during storage. Journal of Food Processing and Preservation, 44(7). https://doi.org/10.1111/jfpp.14541
Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M., Brnčić, S. R. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound, microwaves, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28-37, https://doi.org/10.1016/j.tifs.2018.03.022
Martínez, JM, Delso, C, Álvarez, I, Raso, J. (2020). Pulsed Electric Field-assisted extraction of valuable compounds from microorganisms. Comprehensıve Revıews In Food Scıence And Food Safety, 19, 530–552, https://doi.org/10.1111/1541-4337.12512
Maskooki, A., Eshtiaghi, M. N. (2012). Impact of pulsed electric field on cell disintegration and mass transfer in sugar beet. Food and Bioproducts Processing, 90(3), 377–384. https://doi.org/10.1016/j.fbp.2011.12.007
Mhemdi, H., Bals, O., Vorobiev, E. (2016). Combined pressing-diffusion technology for sugar beets pretreated by pulsed electric field. Journal of Food Engineering, 168, 166–172. https://doi.org/10.1016/j.jfoodeng.2015.07.034
Mirzadeh, M., Arianejad, M. R., Khedmat, L. (2020). Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydrate Polymers, 229, 115421. https://doi.org/10.1016/j.carbpol.2019.115421
Mman R., Kanwal, R., Shafique, B., Arshad, R.N., Irfan, S., Kieliszek, M., Kowalczewski, P.Ł., Irfan, M., Khalid, M.Z., Roobab, U., Aadil, R.M. (2021). A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules, 26(16). https://doi.org/10.3390/molecules26164893
Muir, B.M., Srivastava, S., Mall, A.K (2022). Sugar Beet Cultivation, Management and Processing In. Misra, V. (chief ed.), Springer, Singapore. pp. 837–862, ISBN: 978-981-19-2730-0
Nakthong, N., Eshtiaghi, M. N. (2020 ). Pulsed electric field treatment of sugar beet. In IOP Conference Series: Earth and Environmental Science, 505(1), 012055. https://doi.org/10.1088/1755-1315/505/1/012055
Niu, D., Zeng, X. A., Ren, E. F., Xu, F. Y., Li, J., Wang, M. S., Wang, R. (2020). Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Research International, 137, 109715, https://doi.org/10.1016/j.foodres.2020.109715
Nowacka, M., Tappi, S., Wiktor, A., Rybak, K., Miszczykowska, A., Czyzewski, J., Drozdzal, K., Witrowa-Rajchert, D., Tylewicz, U. (2019). The Impact of Pulsed Electric Field on the Extraction of Bioactive Compounds from Beetroot. Foods. 8(7),244. https://doi.org/10.3390/foods8070244
Oroian, M., Dranca, F. Ursachi, F. (2020). Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. Journal of Food Science Technology, 57, 70–78. https://doi.org/10.1007/s13197-019-04031-x
Ponant, J., Foissac, S., & Esnault, A. (1988). The alkaline extraction of sugar beet. Zuckerindustrie, 113(8), 665-676.
Putnik, P., Kresoja, Ž., Bosiljkov, T., Jambrak, A. R., Barba, F. J., Lorenzo, J. M., Roohinejad S., Granato, D., Žuntar, I., Kovačević, D. B. (2019). Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: Food Chemistry, 279, 150-161. https://doi.org/10.1016/j.foodchem.2018.11.131
Rahaman, A., Siddeeg, A., Manzoor, M.F. (2019) Impact of pulsed electric field treatment on drying kinetics, mass transfer, colour parameters and microstructure of plum. Journal of Food Science and Technology, 56, 2670–2678. https://doi.org/10.1007/s13197-019-03755-0
Rezaee, K., Noghabi, M. S., Behzad, K., Maskooki, A. (2019). Effect of moderate pulsed electric field treatment on viscoelastic properties of sugar beet. Food Science and Technology Research, 25(2), 157–166. https://doi.org/10.3136/fstr.25.157
Ricci, A., Parpinello, G.P., Versari, A. (2018) Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages, 4(1). https://doi.org/10.3390/beverages4010018
Rodriguez Garcia, S. L., Raghavan, V. (2022). Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds, Critical Reviews in Food Science and Nutrition, 62(23), 6446-6466. doi:10.1080/10408398.2021.1901651
Roobab, U., Abida, A., Chacha, J.S., Athar, A., Madni, G.M., Ranjha MMAN., Rusu A.V., Zeng, X-A., Aadil, R.M., Trif, M. (2022). Applications of Innovative Non-Thermal Pulsed Electric Field Technology in Developing Safer and Healthier Fruit Juices. Molecules, 27(13). https://doi.org/10.3390/molecules27134031
Ruzgys, P., Jakutavičiūtė, M., Šatkauskienė, I., Čepurnienė, K., Šatkauskas, S. (2019). Effect of electroporation medium conductivity on exogenous molecule transfer to cells in vitro. Scientific Reports, 9(1), 1-9. doi:10.1038/s41598-018-38287-8
Šalaševičius, A., Uždavinytė, D., Visockis, M., Ruzgys, P., Šatkauskas, S. (2021). Effect of Pulsed Electric Field (PEF) on Bacterial Viability and Whey Protein in the Processing of Raw Milk. Applied Sciences, 11(23). https://doi.org/10.3390/app112311281
Samaranayake, C. P., Mok, J. H., Heskitt, B. F., Sastry, S. K. (2022). Nonthermal inactivation of polyphenol oxidase in apple juice influenced by moderate electric fields: Effects of periodic on-off and constant exposure electrical treatments. Innovative Food Science & Emerging Technologies, 77, 102955. https://doi.org/10.1016/j.ifset.2022.102955
Schultheiss, C., Bluhm, H., Mayer, H. G., Kern, M., Michelberger, T., Witte, G. (2002). Processing of sugar beets with pulsed-electric fields. IEEE Transactions on Plasma Science, 30(4I), 1547–1551. https://doi.org/10.1109/TPS.2002.804212
Semenoglou, I., Dimopoulos, G., Tsironi, T., Taoukis, P. (2020). Mathematical modelling of the effect of solution concentration and the combined application of pulsed electric fields on mass transfer during osmotic dehydration of sea bass fillets. Food and Bioproducts Processing, 121, 186-192. https://doi.org/10.1016/j.fbp.2020.02.007
Shiekh, K. A., Olatunde, O. O., Zhang, B., Huda, N., Benjakul, S. (2021). Pulsed electric field assisted process for extraction of bioactive compounds from custard apple (Annona squamosa) leaves. Food Chemistry, 359, 129976. https://doi.org/10.1016/j.foodchem.2021.129976
Shorstkii, I., Comiotto Alles, M., Parniakov, O., Smetana, S., Aganovic, K., Sosnin, M., Toepfl S., Heinz, V. (2022). Optimization of pulsed electric field assisted drying process of black soldier fly (Hermetia illucens) larvae. Drying Technology, 40(3), 595-603. doi:10.1080/07373937.2020.1819825
Sitzmann, W., Vorobiev, E., Lebovka, N. (2017). Handbook of Electroporation In: Pulsed Electric Fields for Food Industry, Miklavčič, D. (chief ed.), Springer International Publishing Cham, Switzerland, pp. 2335–2354.
Soltanzadeh, M., Peighambardoust, S. H., Gullon, P., Hesari, J., Gullón, B., Alirezalu, K., Lorenzo, J. (2020). Quality aspects and safety of pulsed electric field (PEF) processing on dairy products: Food Reviews International, 38(2022), 96-117. 10.1080/87559129.2020.1849273
Stanley, D. (1991). Biological membrane deterioration and associated quality loses in food tissues. Critical Reviews in Food Science and Nutrition, 30(5), 487–593. https://doi.org/10.1080/10408399109527554
Şengül, M., Topdaş, E. F. (2019). Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(2), 201-216. doi: 10.17097/ataunizfd.466649
Timmermans, R. A., Roland, W. S., van Kekem, K., Matser, A. M., van Boekel, M. A. (2022). Effect of Pasteurization by Moderate Intensity Pulsed Electric Fields (PEF) Treatment Compared to Thermal Treatment on Quality Attributes of Fresh Orange Juice. Foods, 11(21). https://doi.org/10.3390/foods11213360
Tylewicz U., (2020). Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow. In: How does pulsed electric field work ?, Barba, F. J., Parniakov, O., Wiktor, A. ( Eds.), Academic Press, the UK, pp. 3-21.
Visockis, M., Bobinaitė, R., Ruzgys, P., Barakauskas, J., Markevičius, V., Viškelis, P., Šatkauskas, S. (2021). Assessment of plant tissue disintegration degree and its related implications in the pulsed electric field (PEF)–assisted aqueous extraction of betalains from the fresh red beetroot. Innovative Food Science and Emerging Technologies, 73, 102761. https://doi.org/10.1016/j.ifset.2021.102761
Vorobiev E., Lebovka N., (2019). Green Food Processing Techniques In: Pulsed electric field in green processing and preservation of food products, Chemat F., Vorobiev E. (Eds.), Academic Press, the UK, pp. 403-430.
Vorobiev, E., Lebovka, N. (2020). Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy. 1st Edition, Springer Cham, Switzerland, 418 p.
Vorobiev, E., Lebovka, N.I. (2022). Pulsed Electric Fields Technology for the Food Industry. In: Cell Membrane Permeabilization by Pulsed Electric Fields for Efficient Extraction of Intercellular Components from Foods, Raso, J., Heinz, V., Alvarez, I., Toepfl, S. (Eds.), Volume 2, Springer International Publishing, Switzerland pp. 209-269.
Vu, T., LeBlanc, J., Chou, C. C. (2020). Clarification of sugarcane juice by ultrafiltration membrane: Toward the direct production of refined cane sugar. Journal of Food Engineering, 264, 109682. https://doi.org/10.1016/j.jfoodeng.2019.07.029
Wang, L., Deng, W., Wang, P., Huang, W., Wu, J., Zheng, T., Chen, J. (2020). Degradations of aroma characteristics and changes of aroma related compounds, PPO activity, and antioxidant capacity in sugarcane juice during thermal process. Journal Of Food Science, 85(4), 1140-1150. doi: 10.1111/1750-3841.15108
Wu, W. J., ve Chang, J. (2022). Inactivation of vegetative cells, germinated spores, and dormant spores of Bacillus atrophaeus by pulsed electric field with fixed energy input. Journal of Food Process Engineering, 45(2). https://doi.org/10.1111/jfpe.13959
Xi, J., Li, Z., Fan, Y. (2021) Recent advances in continuous extraction of bioactive ingredients from food-processing wastes by pulsed electric fields. Food Science and Nutrition, 61, 1738–1750. https://doi.org/10.1080/10408398.2020.1765308
Xu, B., Chen, J., Tiliwa, E. S., Yan, W., Azam, S. R., Yuan, J., Wei, B., Zhou, C., Ma, H. (2021). Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. Ultrasonics Sonochemistry, 78, 105714, https://doi.org/10.1016/j.ultsonch.2021.105714
Xu, B., Tiliwa, E. S., Yan, W., Azam, S. R., Wei, B., Zhou, C., Bhandari, B. (2021). Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International, 44(4), 862-867. https://doi.org/10.1016/j.foodres.2021.110744
Xu, X., Zhang, L., Feng, Y., Yagoub, A. E. A., Sun, Y., Ma, H., Zhou, C. (2020). Vacuum pulsation drying of okra (Abelmoschus esculentus L. Moench): Better retention of the quality characteristics by flat sweep frequency and pulsed ultrasound pretreatment. Food Chemistry, 326, 127026. https://doi.org/10.1016/j.foodchem.2020.127026
Yamakage, K., Yamada, T., Takahashi, K., Takaki, K., Komuro, M., Sasaki, K., Aoki, H., Kamagata, J., Koide, S., Orikasa, T. (2021). Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. Innovative Food Science & Emerging Technologies, 68, 102615. https://doi.org/10.1016/j.ifset.2021.102615
Zhang, C., Lyu, X., Arshad, R. N., Aadil, R. M., Tong, Y., Zhao, W., Yang, R. (2022). Pulsed electric field as a promising technology for solid foods processing: Food Chemistry, 134367. https://doi.org/10.1016/j.foodchem.2022.134367
Zhang, C., Ye, J., Lyu, X., Zhao, W., Mao, J., Yang, R. (2022). Effects of pulse electric field pretreatment on the frying quality and pore characteristics of potato chips. Food Chemistry, 369, 130516. https://doi.org/10.1016/j.foodchem.2021.130516
Zia, S., Khan, M. R., Shabbir, M. A., Aslam Maan, A., Khan, M. K. I., Nadeem, M., Khalil, A. A., Din, A., Aadil, R. M. (2022). An inclusive overview of advanced thermal and nonthermal extraction techniques for bioactive compounds in food and food-related matrices. Food Reviews International, 38(6), 1166-1196. 10.1080/87559129.2020.1772283
Zimmermann, U. (1986). Reviews of Physiology, Biochemistry and Pharmacology In: Electrical breakdown, electropermeabilization and electrofusion, Falsig Pedersen, H.S. (chief ed.), Volume 105. Springer, Heidelberg, Berlin, pp. 175-256.
Mevcut çalışma, yağsız pamuk tohumundan elde edilen protein konsantresinin karakteristik özelliklerine odaklanmıştır. Bunun için pamuk tohumu proteini konsantresinin (CSPC) nem içeriği, su aktivitesi, rengi, akışkanlığı, ıslanabilirliği ve protein çözünürlüğü gibi fizikokimyasal özellikleri incelenmiştir. Proteinlerin su tutma kapasitesi (WHC), yağ bağlama kapasitesi (OBC), köpük oluşturma kapasitesi, köpük stabilitesi (10 ve 30 dakika), emülsiyon aktivite indeksi (EAI) ve emülsiyon stabilite indeksi (ESI) (10 ve 30 dakika) dâhil olmak üzere tekno-fonksiyonel özellikleri sırasıyla 2.75 g su/g protein, 2.59 g yağ/g protein, %29.00, %93.10-%69.05, 6.25 m2/g ve 29.27-87.81 dk olarak bulunmuştur. 45 kDa moleküler ağırlıktaki CSPC ile ilgili bantlar, sodyum dodesil-sülfat poliakrilamid jel elektroforez (SDS-PAGE) modeli ile tespit edilmiştir. Proteine özgü yapıları tespit etmek için Fourier dönüşümü kızılötesi spektroskopisi (FTIR) kullanılmıştır. Taramalı elektron mikroskobu (SEM) görüntüleri incelendiğinde, CSPC'nin yüzey morfolojisindeki tabaka yapılarının baskın olduğu bulunmuştur. Termal gravimetrik analizör (TGA) sonuçları, protein konsantresinin sıcaklığa karşı mükemmel stabilite sergilediğini göstermiştir.
Astráin-Redín, L., Moya, J., Alejandre, M., Beitia, E., Raso, J., Calvo, B., Cebrian, G., Álvarez, I. (2022). Improving the microbial inactivation uniformity of pulsed electric field ohmic heating treatments of solid products. LWT - Food Science and Technology, 154, 112709. https://doi.org/10.1016/j.lwt.2021.112709
Bagade, S. B., Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: Critical Reviews İn Analytical Chemistry, 51(2), 138-149. 10.1080/10408347.2019.1686966
Barros, M., Redondo, L., Rego, D., Serra, C., Miloudi, K. (2022). Extraction of Essential Oils from Plants by Hydrodistillation with Pulsed Electric Fields (PEF) Pre-Treatment. Applied Sciences, 12(16). https://doi.org/10.3390/app12168107
Bazhal, M., Lebovka, N., Vorobiev, E. (2003). Optimisation of Pulsed Electric Field Strength for Electroplasmolysis of Vegetable Tissues. Biosystems Engineering, 86(3), 339–345. https://doi.org/10.1016/S1537-5110(03)00139-9
Bhattacharjee, C., Saxena, V. K., Dutta, S. (2019). Novel thermal and non-thermal processing of watermelon juice. Trends in Food Science & Technology, 93(2019), 234-243. https://doi.org/10.1016/j.tifs.2019.09.015
Bliesener, K.M., Miehe, D., Buchholz, K., (1991a). Process development in the dewatering of cossettes. Zuckerindustrie, 116 (11), 978–986.
Bocker R., Eric Keven Silva E.K. (2022). Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices, Food Chemistry: X, 15, 100398. https://doi.org/10.1016/j.fochx.2022.100398
Chaves, J. O., De Souza, M. C., Da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, Carneiro T. F., Espinosa, M.V., Peredo A.V.G., Barbero G.F., Rostagno, M. A. (2020). Extraction of flavonoids from natural sources using modern techniques. Frontiers in Chemistry, 8, 507887. https://doi.org/10.3389/fchem.2020.507887
Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., AbertVian, M., (2017). Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
Dastangoo, S., Hamed Mosavian, M. T., Yeganehzad, S. (2020). Optimization of pulsed electric field conditions for sugar extraction from carrots. Food Science & Nutrition, 8(4), 2025-2034. https://doi.org/10.1002/fsn3.1490
Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., Gao, Z.J., Xiao, H. W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes. Critical Reviews İn Food Science And Nutrition, 59(9), 1408-1432. doi: 10.1080/10408398.2017.1409192
Duan, H., Yan, X., Azarakhsh, N., Huang, X., Wang, C. (2022). Effects of high‐pressure pretreatment on acid extraction of pectin from pomelo peel. International Journal of Food Science and Technology, 57(8), 5239-5249. https://doi.org/10.1111/ijfs.15840
Einarsdóttir, R., Þórarinsdóttir, K.A., Aðalbjörnsson, B.V., Guðmundsson M., Marteinsdóttir, G., Kristbergsson K. (2022). Extraction of bioactive compounds from Alaria esculenta with pulsed electric field. Journal of Applied Phycology, 34, 597–608. https://doi.org/10.1007/s10811-021-02624-8
El Belghiti, K., Vorobiev, E. (2004). Mass transfer of sugar from beets enhanced by pulsed electric field. Food and Bioproducts Processing, 82(3C), 226–230. https://doi.org/10.1205/fbio.82.3.226.44187
El-Belghiti, K., Rabhi, Z., Vorobiev, E. (2005). Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field. Journal of the Science of Food and Agriculture, 85(2), 213–218. https://doi.org/10.1002/jsfa.1944
Eshtiaghi, M. N., Knorr, D. (2002). High electric field pulse pretreatment: Potential for sugar beet processing. Journal of Food Engineering, 52(3), 265–272. https://doi.org/10.1016/S0260-8774(01)00114-5
Fincan, M. (2015). Extractability of phenolics from spearmint treated with pulsed electric field. Journal of Food Engineering, 162(2015), 31-37. https://doi.org/10.1016/j.jfoodeng.2015.04.004
Fincan, M., DeVito, F., Dejmek, P. (2004). Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. Journal of Food Engineering, 64(3), 381–388. https://doi.org/10.1016/J.JFOODENG.2003.11.006
Fu, X., Zhao, Z., Yu, S., Chen, W., Wang, J. (2013). The ultrasonic-assisted extraction of sugar from sugar beet cossettes. International Sugar Journal, 115(1378), 692-696.
Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S. M. T., Radojčin, M., Putnik, P., Bursać Kovačević, D. (2018). Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. Journal of Food Process Engineering, 41(1), https://doi.org/10.1111/jfpe.12638
Genovese, J., Kranjc, M., Serša, I., Petracci, M., Rocculi, P., Miklavčič, D., & Mahnič-Kalamiza, S. (2021). PEF-treated plant and animal tissues: Insights by approaching with different electroporation assessment methods. Innovative Food Science & Emerging Technologies, 74, 102872. https://doi.org/10.1016/j.ifset.2021.102872
Ghosh, D., Saluja, N., Singh, T. G. (2019). A critical analysis of electroporation in medical technology. International Journal of Pharmaceutical Sciences and Research, 10(1), 23-28. http://dx.doi.org/10.13040/IJPSR.0975-8232.10(1).23-28
Giteru, S. G., Oey, I., Ali, M. A. (2018). Feasibility of using pulsed electric fields to modify biomacromolecules: A review. Trends in Food Science & Technology, 72, 91-113. https://doi.org/10.1016/j.tifs.2017.12.009
Guionet, A., Fujiwara, T., Sato, H., Takahashi, K., Takaki, K., Matsui, M., Tanino, T., Ohshima T. (2021). Pulsed electric fields act on tryptophan to inactivate α-amylase, Journal of Electrostatics, 112, 103597. https://doi.org/10.1016/j.elstat.2021.103597
Jemai, A. B., Vorobiev, E. (2003). Enhanced leaching from sugar beet cossettes by pulsed electric field. Journal of Food Engineering, 59(4), 405–412. https://doi.org/10.1016/S0260-8774(02)00499-5
Jiang, Y., Xing, M., Kang, Q., Sun, J., Zeng, X. A., Gao, W., Li H., Gao, Y., Li, A. (2022). Pulse electric field assisted process for extraction of Jiuzao glutelin extract and its physicochemical properties and biological activities investigation. Food Chemistry, 383, 132304. https://doi.org/10.1016/j.foodchem.2022.132304
Kantala, C., Supasin, S., Intra, P., Rattanadecho, P. (2022) Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice. Foods, 11(8). https://doi.org/10.3390/foods11081102
Khan, M. I. H., Nagy, S. A., Karim, M. A. (2018). Transport of cellular water during drying: An understanding of cell rupturing mechanism in apple tissue. Food Research International, 105, 772–781. https://doi.org/10.1016/j.foodres.2017.12.010
Knorr, D., Angersbach, A. (1998). Impact of high-intensity electrical field pulses on plant membrane permeabilization. Trends Food Science and Technology, 9, 185–191. https://doi.org/10.1016/S0924-2244(98)00040-5
Kumar, K., Srivastav, S., Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325
Lebovka, N. I., Shynkaryk, M. V., El-Belghiti, K., Benjelloun, H., & Vorobiev, E. (2007). Plasmolysis of sugarbeet: Pulsed electric fields and thermal treatment. Journal of Food Engineering, 80(2), 639–644. https://doi.org/10.1016/j.jfoodeng.2006.06.020
Li, Y., Zhang, Z., Paciulli, M. and Abbaspourrad, A. (2020), Extraction of phycocyanin—A natural blue colorant from dried spirulina biomass: Influence of processing parameters and extraction techniques. Journal of Food Science, 85, 727-735. https://doi.org/10.1111/1750-3841.14842
Limsangouan, N., Charunuch, C., Sastry, S. K., Srichamnong, W., Jittanit, W. (2020). High pressure processing of tamarind (Tamarindus indica) seed for xyloglucan extraction. LWT - Food Science and Technology, 134, 110112. https://doi.org/10.1016/j.lwt.2020.110112
Loginova, K. V., Vorobiev, E., Bals, O., Lebovka, N. I. (2011). Pilot study of countercurrent cold and mild heat extraction of sugar from sugar beets, assisted by pulsed electric fields. Journal of Food Engineering, 102(4), 340–347. https://doi.org/10.1016/j.jfoodeng.2010.09.010
Loginova, K., Loginov, M., Vorobiev, E., Lebovka, N. I. (2011). Quality and filtration characteristics of sugar beet juice obtained by “cold” extraction assisted by pulsed electric field. Journal of Food Engineering, 106(2), 144–151. https://doi.org/10.1016/j.jfoodeng.2011.04.017
Loginova, K., Loginov, M., Vorobiev, E., Lebovka, N. I. (2012). Better lime purification of sugar beet juice obtained by low temperature aqueous extraction assisted by pulsed electric field. LWT - Food Science and Technology, 46(1), 371–374. https://doi.org/10.1016/j.lwt.2011.10.005
López, N., Puértolas, E., Condón, S., Raso, J., Ignacio, Á. (2009). Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT - Food Science and Technology, 42(10), 1674–1680. https://doi.org/10.1016/j.lwt.2009.05.015
Mahn, A., Comett, R., Segura-Ponce, L. A., Díaz-Álvarez, R. E. (2022). Effect of pulsed electric field-assisted extraction on recovery of sulforaphane from broccoli florets. Journal of Food Process Engineering, 45(7). https://doi.org/10.1111/jfpe.13837
Manzoor, M. F., Zeng, X. A., Ahmad, N., Ahmed, Z., Rehman, A., Aadil, R. M., Roobab, U., Siddique, R., Rahaman, A. (2020). Effect of pulsed electric field and thermal treatments on the bioactive compounds, enzymes, microbial, and physical stability of almond milk during storage. Journal of Food Processing and Preservation, 44(7). https://doi.org/10.1111/jfpp.14541
Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M., Brnčić, S. R. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound, microwaves, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28-37, https://doi.org/10.1016/j.tifs.2018.03.022
Martínez, JM, Delso, C, Álvarez, I, Raso, J. (2020). Pulsed Electric Field-assisted extraction of valuable compounds from microorganisms. Comprehensıve Revıews In Food Scıence And Food Safety, 19, 530–552, https://doi.org/10.1111/1541-4337.12512
Maskooki, A., Eshtiaghi, M. N. (2012). Impact of pulsed electric field on cell disintegration and mass transfer in sugar beet. Food and Bioproducts Processing, 90(3), 377–384. https://doi.org/10.1016/j.fbp.2011.12.007
Mhemdi, H., Bals, O., Vorobiev, E. (2016). Combined pressing-diffusion technology for sugar beets pretreated by pulsed electric field. Journal of Food Engineering, 168, 166–172. https://doi.org/10.1016/j.jfoodeng.2015.07.034
Mirzadeh, M., Arianejad, M. R., Khedmat, L. (2020). Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydrate Polymers, 229, 115421. https://doi.org/10.1016/j.carbpol.2019.115421
Mman R., Kanwal, R., Shafique, B., Arshad, R.N., Irfan, S., Kieliszek, M., Kowalczewski, P.Ł., Irfan, M., Khalid, M.Z., Roobab, U., Aadil, R.M. (2021). A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules, 26(16). https://doi.org/10.3390/molecules26164893
Muir, B.M., Srivastava, S., Mall, A.K (2022). Sugar Beet Cultivation, Management and Processing In. Misra, V. (chief ed.), Springer, Singapore. pp. 837–862, ISBN: 978-981-19-2730-0
Nakthong, N., Eshtiaghi, M. N. (2020 ). Pulsed electric field treatment of sugar beet. In IOP Conference Series: Earth and Environmental Science, 505(1), 012055. https://doi.org/10.1088/1755-1315/505/1/012055
Niu, D., Zeng, X. A., Ren, E. F., Xu, F. Y., Li, J., Wang, M. S., Wang, R. (2020). Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Research International, 137, 109715, https://doi.org/10.1016/j.foodres.2020.109715
Nowacka, M., Tappi, S., Wiktor, A., Rybak, K., Miszczykowska, A., Czyzewski, J., Drozdzal, K., Witrowa-Rajchert, D., Tylewicz, U. (2019). The Impact of Pulsed Electric Field on the Extraction of Bioactive Compounds from Beetroot. Foods. 8(7),244. https://doi.org/10.3390/foods8070244
Oroian, M., Dranca, F. Ursachi, F. (2020). Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. Journal of Food Science Technology, 57, 70–78. https://doi.org/10.1007/s13197-019-04031-x
Ponant, J., Foissac, S., & Esnault, A. (1988). The alkaline extraction of sugar beet. Zuckerindustrie, 113(8), 665-676.
Putnik, P., Kresoja, Ž., Bosiljkov, T., Jambrak, A. R., Barba, F. J., Lorenzo, J. M., Roohinejad S., Granato, D., Žuntar, I., Kovačević, D. B. (2019). Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: Food Chemistry, 279, 150-161. https://doi.org/10.1016/j.foodchem.2018.11.131
Rahaman, A., Siddeeg, A., Manzoor, M.F. (2019) Impact of pulsed electric field treatment on drying kinetics, mass transfer, colour parameters and microstructure of plum. Journal of Food Science and Technology, 56, 2670–2678. https://doi.org/10.1007/s13197-019-03755-0
Rezaee, K., Noghabi, M. S., Behzad, K., Maskooki, A. (2019). Effect of moderate pulsed electric field treatment on viscoelastic properties of sugar beet. Food Science and Technology Research, 25(2), 157–166. https://doi.org/10.3136/fstr.25.157
Ricci, A., Parpinello, G.P., Versari, A. (2018) Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages, 4(1). https://doi.org/10.3390/beverages4010018
Rodriguez Garcia, S. L., Raghavan, V. (2022). Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds, Critical Reviews in Food Science and Nutrition, 62(23), 6446-6466. doi:10.1080/10408398.2021.1901651
Roobab, U., Abida, A., Chacha, J.S., Athar, A., Madni, G.M., Ranjha MMAN., Rusu A.V., Zeng, X-A., Aadil, R.M., Trif, M. (2022). Applications of Innovative Non-Thermal Pulsed Electric Field Technology in Developing Safer and Healthier Fruit Juices. Molecules, 27(13). https://doi.org/10.3390/molecules27134031
Ruzgys, P., Jakutavičiūtė, M., Šatkauskienė, I., Čepurnienė, K., Šatkauskas, S. (2019). Effect of electroporation medium conductivity on exogenous molecule transfer to cells in vitro. Scientific Reports, 9(1), 1-9. doi:10.1038/s41598-018-38287-8
Šalaševičius, A., Uždavinytė, D., Visockis, M., Ruzgys, P., Šatkauskas, S. (2021). Effect of Pulsed Electric Field (PEF) on Bacterial Viability and Whey Protein in the Processing of Raw Milk. Applied Sciences, 11(23). https://doi.org/10.3390/app112311281
Samaranayake, C. P., Mok, J. H., Heskitt, B. F., Sastry, S. K. (2022). Nonthermal inactivation of polyphenol oxidase in apple juice influenced by moderate electric fields: Effects of periodic on-off and constant exposure electrical treatments. Innovative Food Science & Emerging Technologies, 77, 102955. https://doi.org/10.1016/j.ifset.2022.102955
Schultheiss, C., Bluhm, H., Mayer, H. G., Kern, M., Michelberger, T., Witte, G. (2002). Processing of sugar beets with pulsed-electric fields. IEEE Transactions on Plasma Science, 30(4I), 1547–1551. https://doi.org/10.1109/TPS.2002.804212
Semenoglou, I., Dimopoulos, G., Tsironi, T., Taoukis, P. (2020). Mathematical modelling of the effect of solution concentration and the combined application of pulsed electric fields on mass transfer during osmotic dehydration of sea bass fillets. Food and Bioproducts Processing, 121, 186-192. https://doi.org/10.1016/j.fbp.2020.02.007
Shiekh, K. A., Olatunde, O. O., Zhang, B., Huda, N., Benjakul, S. (2021). Pulsed electric field assisted process for extraction of bioactive compounds from custard apple (Annona squamosa) leaves. Food Chemistry, 359, 129976. https://doi.org/10.1016/j.foodchem.2021.129976
Shorstkii, I., Comiotto Alles, M., Parniakov, O., Smetana, S., Aganovic, K., Sosnin, M., Toepfl S., Heinz, V. (2022). Optimization of pulsed electric field assisted drying process of black soldier fly (Hermetia illucens) larvae. Drying Technology, 40(3), 595-603. doi:10.1080/07373937.2020.1819825
Sitzmann, W., Vorobiev, E., Lebovka, N. (2017). Handbook of Electroporation In: Pulsed Electric Fields for Food Industry, Miklavčič, D. (chief ed.), Springer International Publishing Cham, Switzerland, pp. 2335–2354.
Soltanzadeh, M., Peighambardoust, S. H., Gullon, P., Hesari, J., Gullón, B., Alirezalu, K., Lorenzo, J. (2020). Quality aspects and safety of pulsed electric field (PEF) processing on dairy products: Food Reviews International, 38(2022), 96-117. 10.1080/87559129.2020.1849273
Stanley, D. (1991). Biological membrane deterioration and associated quality loses in food tissues. Critical Reviews in Food Science and Nutrition, 30(5), 487–593. https://doi.org/10.1080/10408399109527554
Şengül, M., Topdaş, E. F. (2019). Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(2), 201-216. doi: 10.17097/ataunizfd.466649
Timmermans, R. A., Roland, W. S., van Kekem, K., Matser, A. M., van Boekel, M. A. (2022). Effect of Pasteurization by Moderate Intensity Pulsed Electric Fields (PEF) Treatment Compared to Thermal Treatment on Quality Attributes of Fresh Orange Juice. Foods, 11(21). https://doi.org/10.3390/foods11213360
Tylewicz U., (2020). Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow. In: How does pulsed electric field work ?, Barba, F. J., Parniakov, O., Wiktor, A. ( Eds.), Academic Press, the UK, pp. 3-21.
Visockis, M., Bobinaitė, R., Ruzgys, P., Barakauskas, J., Markevičius, V., Viškelis, P., Šatkauskas, S. (2021). Assessment of plant tissue disintegration degree and its related implications in the pulsed electric field (PEF)–assisted aqueous extraction of betalains from the fresh red beetroot. Innovative Food Science and Emerging Technologies, 73, 102761. https://doi.org/10.1016/j.ifset.2021.102761
Vorobiev E., Lebovka N., (2019). Green Food Processing Techniques In: Pulsed electric field in green processing and preservation of food products, Chemat F., Vorobiev E. (Eds.), Academic Press, the UK, pp. 403-430.
Vorobiev, E., Lebovka, N. (2020). Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy. 1st Edition, Springer Cham, Switzerland, 418 p.
Vorobiev, E., Lebovka, N.I. (2022). Pulsed Electric Fields Technology for the Food Industry. In: Cell Membrane Permeabilization by Pulsed Electric Fields for Efficient Extraction of Intercellular Components from Foods, Raso, J., Heinz, V., Alvarez, I., Toepfl, S. (Eds.), Volume 2, Springer International Publishing, Switzerland pp. 209-269.
Vu, T., LeBlanc, J., Chou, C. C. (2020). Clarification of sugarcane juice by ultrafiltration membrane: Toward the direct production of refined cane sugar. Journal of Food Engineering, 264, 109682. https://doi.org/10.1016/j.jfoodeng.2019.07.029
Wang, L., Deng, W., Wang, P., Huang, W., Wu, J., Zheng, T., Chen, J. (2020). Degradations of aroma characteristics and changes of aroma related compounds, PPO activity, and antioxidant capacity in sugarcane juice during thermal process. Journal Of Food Science, 85(4), 1140-1150. doi: 10.1111/1750-3841.15108
Wu, W. J., ve Chang, J. (2022). Inactivation of vegetative cells, germinated spores, and dormant spores of Bacillus atrophaeus by pulsed electric field with fixed energy input. Journal of Food Process Engineering, 45(2). https://doi.org/10.1111/jfpe.13959
Xi, J., Li, Z., Fan, Y. (2021) Recent advances in continuous extraction of bioactive ingredients from food-processing wastes by pulsed electric fields. Food Science and Nutrition, 61, 1738–1750. https://doi.org/10.1080/10408398.2020.1765308
Xu, B., Chen, J., Tiliwa, E. S., Yan, W., Azam, S. R., Yuan, J., Wei, B., Zhou, C., Ma, H. (2021). Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. Ultrasonics Sonochemistry, 78, 105714, https://doi.org/10.1016/j.ultsonch.2021.105714
Xu, B., Tiliwa, E. S., Yan, W., Azam, S. R., Wei, B., Zhou, C., Bhandari, B. (2021). Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International, 44(4), 862-867. https://doi.org/10.1016/j.foodres.2021.110744
Xu, X., Zhang, L., Feng, Y., Yagoub, A. E. A., Sun, Y., Ma, H., Zhou, C. (2020). Vacuum pulsation drying of okra (Abelmoschus esculentus L. Moench): Better retention of the quality characteristics by flat sweep frequency and pulsed ultrasound pretreatment. Food Chemistry, 326, 127026. https://doi.org/10.1016/j.foodchem.2020.127026
Yamakage, K., Yamada, T., Takahashi, K., Takaki, K., Komuro, M., Sasaki, K., Aoki, H., Kamagata, J., Koide, S., Orikasa, T. (2021). Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. Innovative Food Science & Emerging Technologies, 68, 102615. https://doi.org/10.1016/j.ifset.2021.102615
Zhang, C., Lyu, X., Arshad, R. N., Aadil, R. M., Tong, Y., Zhao, W., Yang, R. (2022). Pulsed electric field as a promising technology for solid foods processing: Food Chemistry, 134367. https://doi.org/10.1016/j.foodchem.2022.134367
Zhang, C., Ye, J., Lyu, X., Zhao, W., Mao, J., Yang, R. (2022). Effects of pulse electric field pretreatment on the frying quality and pore characteristics of potato chips. Food Chemistry, 369, 130516. https://doi.org/10.1016/j.foodchem.2021.130516
Zia, S., Khan, M. R., Shabbir, M. A., Aslam Maan, A., Khan, M. K. I., Nadeem, M., Khalil, A. A., Din, A., Aadil, R. M. (2022). An inclusive overview of advanced thermal and nonthermal extraction techniques for bioactive compounds in food and food-related matrices. Food Reviews International, 38(6), 1166-1196. 10.1080/87559129.2020.1772283
Zimmermann, U. (1986). Reviews of Physiology, Biochemistry and Pharmacology In: Electrical breakdown, electropermeabilization and electrofusion, Falsig Pedersen, H.S. (chief ed.), Volume 105. Springer, Heidelberg, Berlin, pp. 175-256.
Yücetepe, M., Akalan, M., Bayrak Akay, K., Karakuş, M. Ş., vd. (2023). DETERMINATION OF THE CHARACTERISTIC ATTRIBUTES OF COTTONSEED PROTEIN CONCENTRATE. Gıda, 48(2), 483-497. https://doi.org/10.15237/gida.GD22115
AMA
Yücetepe M, Akalan M, Bayrak Akay K, Karakuş MŞ, Karaaslan A, Başyiğit B, Karaaslan M. DETERMINATION OF THE CHARACTERISTIC ATTRIBUTES OF COTTONSEED PROTEIN CONCENTRATE. GIDA. Nisan 2023;48(2):483-497. doi:10.15237/gida.GD22115
Chicago
Yücetepe, Melike, Merve Akalan, Kamile Bayrak Akay, Mehmet Şükrü Karakuş, Asliye Karaaslan, Bülent Başyiğit, ve Mehmet Karaaslan. “DETERMINATION OF THE CHARACTERISTIC ATTRIBUTES OF COTTONSEED PROTEIN CONCENTRATE”. Gıda 48, sy. 2 (Nisan 2023): 483-97. https://doi.org/10.15237/gida.GD22115.
EndNote
Yücetepe M, Akalan M, Bayrak Akay K, Karakuş MŞ, Karaaslan A, Başyiğit B, Karaaslan M (01 Nisan 2023) DETERMINATION OF THE CHARACTERISTIC ATTRIBUTES OF COTTONSEED PROTEIN CONCENTRATE. Gıda 48 2 483–497.
IEEE
M. Yücetepe, M. Akalan, K. Bayrak Akay, M. Ş. Karakuş, A. Karaaslan, B. Başyiğit, ve M. Karaaslan, “DETERMINATION OF THE CHARACTERISTIC ATTRIBUTES OF COTTONSEED PROTEIN CONCENTRATE”, GIDA, c. 48, sy. 2, ss. 483–497, 2023, doi: 10.15237/gida.GD22115.
ISNAD
Yücetepe, Melike vd. “DETERMINATION OF THE CHARACTERISTIC ATTRIBUTES OF COTTONSEED PROTEIN CONCENTRATE”. Gıda 48/2 (Nisan 2023), 483-497. https://doi.org/10.15237/gida.GD22115.
JAMA
Yücetepe M, Akalan M, Bayrak Akay K, Karakuş MŞ, Karaaslan A, Başyiğit B, Karaaslan M. DETERMINATION OF THE CHARACTERISTIC ATTRIBUTES OF COTTONSEED PROTEIN CONCENTRATE. GIDA. 2023;48:483–497.
MLA
Yücetepe, Melike vd. “DETERMINATION OF THE CHARACTERISTIC ATTRIBUTES OF COTTONSEED PROTEIN CONCENTRATE”. Gıda, c. 48, sy. 2, 2023, ss. 483-97, doi:10.15237/gida.GD22115.
Vancouver
Yücetepe M, Akalan M, Bayrak Akay K, Karakuş MŞ, Karaaslan A, Başyiğit B, Karaaslan M. DETERMINATION OF THE CHARACTERISTIC ATTRIBUTES OF COTTONSEED PROTEIN CONCENTRATE. GIDA. 2023;48(2):483-97.