Derleme
BibTex RIS Kaynak Göster

USE OF ULTRASOUND PROCESS TO OBTAIN PROTEIN FROM PLANT-BASED WASTE AND BY-PRODUCTS AND ITS EFFECT ON FUNCTIONAL PROPERTIES OF PROTEINS

Yıl 2024, Cilt: 49 Sayı: 1, 68 - 87, 14.02.2024
https://doi.org/10.15237/gida.GD23115

Öz

Investigation of different strategies for the effective use of food resources and the development of sustainable food production systems are among the current research topics due to the changing environmental and living conditions, increasing world population, limited food resources, and diversified nutritional preferences. Plant-based proteins emerge as an alternative source to meet the growing nutritional needs. The utilization of proteins from plant-based waste and by-products within the framework of a circular economy policy becomes important for the efficient use of food resources. Innovative extraction strategies, such as ultrasound-assisted extraction, are being developed in plant-based protein production. The ultrasound not only ensures higher efficiency in the extraction of proteins from plants containing lignocellulosic components but also enhance the functional properties of proteins. This review aims to evaluate the recent developments in ultrasound-assisted protein extraction from plant-based waste and by-products, as well as the potential effects on the functional properties of proteins.

Kaynakça

  • Akharume, F.U., Aluko, R.E., Adedeji, A.A. (2021). Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 198-224.
  • Alsalman, F.B., Tulbek, M., Nickerson, M., Ramaswamy, H.S. (2020). Evaluation and optimization of functional and antinutritional properties of aquafaba. Legume Science, 2(2): e30.
  • Amagliani, L., Silva, J. V., Saffon, M., Dombrowski, J. (2021). On the foaming properties of plant proteins: Current status and future opportunities. Trends in Food Science & Technology, 118, 261-272.
  • Ampofo, J., Ngadi, M. (2022). Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrasonics Sonochemistry, 84, 105955.
  • Aryee, A.N.A., Agyei, D., Udenigwe, C.C. (2018). Impact of processing on the chemistry and functionality of food proteins. In: Proteins in Food Processing, Rickey Y. Yada (ed.), 2nd edition. Woodhead Publishing, pp. 27-45.
  • Bangar, S.P., Esua, O.J., Sharma, N., Thirumdas, R. (2022). Ultrasound‐assisted modification of gelation properties of proteins: A review. Journal of Texture Studies, 53(6), 763-774.
  • Barbosa-Cánovas, G.V., Donsi, F., Yildiz, S., Candoğan, K., Pokhrel, P.R., Guadarrama-Lezama, A.Y. (2022). Nonthermal processing technologies for stabilization and enhancement of bioactive compounds in foods. Food Engineering Reviews, 1-37.
  • Bernardi, S., Lupatini-Menegotto, A.L., Kalschne, D.L., Moraes Flores, É.L., Bittencourt, P.R.S., Colla, E., Canan, C. (2021). Ultrasound: A suitable technology to improve the extraction and techno-functional properties of vegetable food proteins. Plant Foods for Human Nutrition, 76, 1-11.
  • Bhargava, N., Mor, R.S., Kumar, K., Sharanagat, V.S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293.
  • Burd, N.A., McKenna, C.F., Salvador, A.F., Paulussen, K.J., Moore, D.R. (2019). Dietary protein quantity, quality, and exercise are key to healthy living: a muscle-centric perspective across the lifespan. Frontiers in Nutrition, 83.
  • Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A. S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560.
  • Chittapalo, T., Noomhorm, A. (2009). Ultrasonic assisted alkali extraction of protein from defatted rice bran and properties of the protein concentrates. International Journal of Food Science & Technology, 44(9), 1843-1849.
  • Cui, L., Bandillo, N., Wang, Y., Ohm, J. B., Chen, B., Rao, J. (2020). Functionality and structure of yellow pea protein isolate as affected by cultivars and extraction pH. Food Hydrocolloids, 108, 106008.
  • Dabbour, M., He, R., Ma, H., Musa, A. (2018). Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. Journal of Food Process Engineering, 41(5), e12799.
  • Day, L., Cakebread, J.A., Loveday, S.M. (2022). Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends in Food Science & Technology, 119, 428-442.
  • Demirdöven, A. Baysal, T. (2020). Ultrases. Gıda Mühendisliğinde Isıl Olmayan Teknolojiler, Baysal, T. ve İçier, F. (eds.), Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., Ankara, 2. Baskı, s. 197-218.
  • Fărcaș, A.C., Socaci, S.A., Nemeș, S.A., Salanță, L.C., Chiș, M.S., Pop, C.R., Borşa, A., Diaconeasa, Z., Vodnar, D.C. (2022). Cereal Waste Valorization through Conventional and Current Extraction Techniques—An Up-to-Date Overview. Foods, 11(16), 2454.
  • Feyzi, S., Varidi, M., Zare, F., Varidi, M.J. (2015). Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties. Journal of the Science of Food and Agriculture, 95(15), 3165-3176.
  • Gao, K., Rao, J., Chen, B. (2022). Unraveling the mechanism by which high intensity ultrasound improves the solubility of commercial pea protein isolates. Food Hydrocolloids, 131, 107823.
  • Gharibzahedi, S.M.T., Smith, B. (2020). The functional modification of legume proteins by ultrasonication: A review. Trends in Food Science & Technology, 98, 107-116.
  • Golly, M.K., Ma, H., Yuqing, D., Dandan, L., Quaisie, J., Tuli, J.A., Mintah, B.K., Dzah, C.S. Agordoh, P.D. (2020). Effect of multi‐frequency countercurrent ultrasound treatment on extraction optimization, functional and structural properties of protein isolates from walnut (Juglans regia L.) meal. Journal of Food Biochemistry, 44(6), e13210.
  • Görgüç, A., Bircan, C., Yılmaz, F.M. (2019). Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chemistry, 283, 637-645.
  • Hermundsdottir, F., Aspelund, A. (2021). Sustainability innovations and firm competitiveness: A review. Journal of Cleaner Production, 280, 124715.
  • Jahan, K., Ashfaq, A., Younis, K., Yousuf, O., Islam, R.U. (2022). A review of the effects of ultrasound-assisted extraction factors on plant protein yield and functional properties. Journal of Food Measurement and Characterization, 16(4), 2875-2883.
  • Kamal, H., Ali, A., Manickam, S., Le, C.F. (2023). Impact of cavitation on the structure and functional quality of extracted protein from food sources–An overview. Food Chemistry, 407, 135071.
  • Kamal, H., Le, C.F., Salter, A.M., Ali, A. (2021). Extraction of protein from food waste: An overview of current status and opportunities. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2455-2475.
  • Karabulut, G., Yemiş, O. (2022). Modification of hemp seed protein isolate (Cannabis sativa L.) by high-intensity ultrasound treatment. Part 1: Functional properties. Food Chemistry, 375, 131843.
  • Karabulut, G., Yildiz, S., Karaca, A.C., Yemiş, O. (2023). Ultrasound and enzyme‐pretreated extraction for the valorization of pea pod proteins. Journal of Food Process Engineering, e14452.
  • Kumar, M., Tomar, M., Potkule, J., Verma, R., Punia, S., Mahapatra, A., ... Kennedy, J.F. (2021). Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids, 115, 106595.
  • Lam, A.C.Y., Can Karaca, A., Tyler, R.T., Nickerson, M.T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126-147.
  • Li, X., Qi, B., Zhang, S., Li, Y. (2023). Effects of ultrasonic treatment on the structural and functional properties of cactus (Opuntia ficus-indica) seed protein. Ultrasonics Sonochemistry, 106465.
  • Li, W., Yang, H., Coldea, T. E., Zhao, H. (2021). Modification of structural and functional characteristics of brewer's spent grain protein by ultrasound assisted extraction. LWT, 139, 110582
  • Liu, Y., Ma, X. Y., Liu, L. N., Xie, Y. P., Ke, Y. J., Cai, Z. J., Wu, G.J. (2019). Ultrasonic-assisted extraction and functional properties of wampee seed protein. Food Science and Technology, 39, 324-331.
  • Loveday, S.M. (2019). Food proteins: technological, nutritional, and sustainability attributes of traditional and emerging proteins. Annual Review of Food Science and Technology, 10, 311-339.
  • Lu, Z.X., He, J.F., Zhang, Y.C., Bing, D.J. (2020). Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition, 60(15), 2593-2605.
  • Ly, H.L., Tran, T.M.C., Tran, T.T.T., Ton, N.M.N., Le, V.V.M. (2018). Application of ultrasound to protein extraction from defatted rice bran. International Food Research Journal, 25(2), 695-701.
  • Ma, K.K., Greis, M., Lu, J., Nolden, A.A., McClements, D.J., Kinchla, A.J. (2022). Functional performance of plant proteins. Foods, 11(4), 594.
  • Malik, M.A., Saini, C.S. (2017). Gamma irradiation of alkali extracted protein isolate from dephenolized sunflower meal. LWT, 84, 204-211.
  • McClements, D.J. (2020). Future foods: Is it possible to design a healthier and more sustainable food supply?. Nutrition Bulletin, 45(3), 341-354.
  • Mellinas, C., Solaberrieta, I., Pelegrín, C.J., Jiménez, A., Garrigós, M.C. (2022). Valorization of Agro-Industrial Wastes by Ultrasound-Assisted Extraction as a Source of Proteins, Antioxidants and Cutin: A Cascade Approach. Antioxidants, 11(9), 1739.
  • Naik, M., Natarajan, V., Modupalli, N., Thangaraj, S., Rawson, A. (2022). Pulsed ultrasound assisted extraction of protein from defatted Bitter melon seeds (Momardica charantia L.) meal: Kinetics and quality measurements. LWT, 155, 112997.
  • Namugenyi, C., Nimmagadda, S.L., Reiners, T. (2019). Design of a SWOT analysis model and its evaluation in diverse digital business ecosystem contexts. Procedia Computer Science, 159, 1145-1154.
  • Nguyen, T.H., Le, V.V.M. (2019). Effects of technological parameters of ultrasonic treatment on the protein extraction yield from defatted peanut meal. International Food Research Journal, 26(3), 1079-1085.
  • Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S.O., Chuck-Hernández, C. (2017). Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: Effects in yield and functional properties of protein isolates. Food and Bioprocess Technology, 10, 543-555.
  • Osborne TB. (1908). Our present knowledge of plant proteins. Science 28:417–427
  • Özkan, G., Subaşi, B.G., Beştepe, S.K., Güven, E.Ç. (2022). Sürdürülebilir Gıda ve Tarımsal Atık Yönetimi. Çevre İklim ve Sürdürülebilirlik, 23(2), 145-160.
  • Özyurt, V.H., Tetik, I., Ötleş, S. (2021). Influence of process conditions on ultrasound‐assisted protein extraction from cold pressed tomato seed waste. Journal of Food Processing and Preservation, 45(12), e16079.
  • Panda, D., Manickam, S. (2019). Cavitation technology—The future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. Applied Sciences, 9(4), 766.
  • Pearce, K.N., Kinsella, J.E. (1978). Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3), 716-723.
  • Qiaoyun, C., Xinghong, N.I., Liang, Z., Zheng, T., Jin, L., Kang, S., Xuan, C., Xinghui, L. (2017). Optimization of protein extraction and decoloration conditions for tea residues. Horticultural Plant Journal, 3(4), 172-176.
  • Qiu, M., Wang, N., Pend, J., Li, Y., Li, L., Xie, X. (2023). Ultrasound‐assisted reverse micelle extraction and characterization of tea protein from tea residue. Journal of the Science of Food and Agriculture, 103(8), 4068-4076.
  • Rahman, M.M., Byanju, B., Grewell, D., Lamsal, B.P. (2020). High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry, 64, 105019.
  • Rahman, M.M., Lamsal, B.P. (2021). Ultrasound‐assisted extraction and modification of plant‐based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1457-1480.
  • Resendiz-Vazquez, J.A., Ulloa, J.A., Urías-Silvas, J.E., Bautista-Rosales, P.U., Ramírez-Ramírez, J.C., Rosas-Ulloa, P., González-Torres, L. (2017). Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrasonic Sonochemistry. 37, 436-444.
  • Sari, Y.W., Bruins, M.E., Sanders, J.P. (2013). Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Industrial Crops and Products, 43, 78-83.
  • Sari, Y.W., Mulder, W.J., Sanders, J.P., Bruins, M.E. (2015). Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal, 10(8), 1138-1157.
  • Sheng, L., Wang, Y., Chen, J., Zou, J., Wang, Q., Ma, M. (2018). Influence of high-intensity ultrasound on foaming and structural properties of egg white. Food Research International, 108, 604-610.
  • Soto-Sierra, L., Stoykova, P., Nikolov, Z. L. (2018). Extraction and fractionation of microalgae-based protein products. Algal Research, 36, 175-192.
  • Sun, L.H., Yu, F., Wang, Y.Y., Lv, S.W., He, L.Y. (2021). Effects of ultrasound extraction on the physicochemical and emulsifying properties of rice bran protein. International Journal of Food Engineering, 17(5), 327-335.
  • Tang, S.Q., Du, Q.H., Fu, Z. (2021). Ultrasonic treatment on physicochemical properties of water-soluble protein from Moringa oleifera seed. Ultrasonics Sonochemistry, 71, 105357.
  • Tanger, C., Engel, J., Kulozik, U. (2020). Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour. Food Hydrocolloids, 107, 105949.
  • Téllez-Morales, J. A., Hernández-Santo, B., Rodríguez-Miranda, J. (2020). Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrasonics Sonochemistry, 61, 104787.
  • Tiwari, A., Khawas, R. (2021). Food waste and agro by-products: A step towards food sustainability. In: Innovation in the food sector through the valorization of food and agro-food by-products, Ana Novo de Barros and Irene Gouvinhas (eds), IntechOpen. DOI: 10.5772/intechopen.96177
  • Tiwari, B.K., Mason, T.J. (2012). Ultrasound processing of fluid foods. In: Novel thermal and non-thermal technologies for fluid foods, Academic Press, pp. 135-165.
  • Tripathi, A.D., Mishra, R., Maurya, K.K., Singh, R.B., Wilson, D.W. (2019). Estimates for world population and global food availability for global health. In: The role of functional food security in global health, Academic Press, pp. 3-24.
  • TÜİK (Türkiye İstatistik Kurumu), (2021). Atık İstatistikleri, 2020. https://data.tuik.gov.tr/Bulten/Index?p=Atik%20Istatistikleri-2020-37198. (Erişim tarihi: 27.03.2023).
  • United Nations (2015). United Nations - The Millennium Development Goals Report. https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%201).pdf. Erişim Tarihi: 01.08.2023
  • Van Dijk, M., Morley, T., Rau, M. L., Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494-501.
  • Wang, F., Zhang, Y., Xu, L., Ma, H. (2020). An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. LWT, 127, 109348.
  • Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260-267.
  • Xue, F., Zhu, C., Liu, F., Wang, S., Liu, H., Li, C. (2018). Effects of high‐intensity ultrasound treatment on functional properties of plum (Pruni domesticae semen) seed protein isolate. Journal of the Science of Food and Agriculture, 98(15), 5690-5699.
  • Yagoub, A.A., Ma, M., Zhou, C. (2017). Ultrasonic-assisted extraction of protein from rapeseed (Brassica napus L.) meal: Optimization of extraction conditions and structural characteristics of the protein. International Food Research Journal, 24(2), 621.
  • Yao, Y., Pan, Y., Liu, S. (2020). Power ultrasound and its applications: A state-of-the-art review. Ultrasonics Sonochemistry, 62, 104722.
  • Yılmaz, E., Hüriyet, Z. (2017). Physico-chemical and functional properties of extracted capia pepperseed (Capsicum annuum L.) proteins. Waste and Biomass Valorization, 8, 871-881.

ULTRASES PROSESİNİN BİTKİSEL ATIK VE YAN ÜRÜNLERDEN PROTEİN ELDESİNDE KULLANIMI VE PROTEİNLERİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ

Yıl 2024, Cilt: 49 Sayı: 1, 68 - 87, 14.02.2024
https://doi.org/10.15237/gida.GD23115

Öz

Değişen çevresel ve yaşamsal koşullar, artan dünya nüfusu, sınırlı besin kaynakları ve çeşitlenen beslenme tercihleri sebebiyle gıda kaynaklarının etkin kullanımını ve sürdürülebilir gıda üretim sistemlerinin geliştirilmesini hedefleyen farklı stratejilerin araştırılması günümüzde dikkat çeken güncel araştırma konuları arasındadır. Bitkisel proteinler ise artan nüfusun beslenme ihtiyacını karşılayabilmek için alternatif bir kaynak olarak karşımıza çıkmakta olup bitkisel atık ve yan ürünlerin proteinlerinin değerlendirilerek döngüsel ekonomi politikası çerçevesinde yeniden ekonomiye kazandırılması beslenme kaynaklarının etkin kullanımı için önem arz etmektedir. Bitkisel protein üretimindeki geleneksel yaklaşımlara alternatif olarak yenilikçi ekstraksiyon stratejileri geliştirilmekte olup ultrases destekli protein ekstraksiyonu bu yöntemlerden birisidir. Ultrases prosesi lignoselülozik bileşenlerin olduğu bitkisel matriksten proteinlerin ekstraksiyonunda daha yüksek verim elde edilmesini sağlamanın yanı sıra aynı zamanda proteinlerin fonksiyonel özelliklerini geliştirme yönünde etki gösterme potansiyelinden dolayı dikkat çekmektedir. Bu derleme ise, bitkisel atık ve yan ürünlerden ultrases prosesiyle protein ekstraksiyonu ve proteinlerin fonksiyonel özellikleri üzerindeki olası etkileri konularındaki güncel gelişmeleri değerlendirmeyi amaçlamaktadır.

Kaynakça

  • Akharume, F.U., Aluko, R.E., Adedeji, A.A. (2021). Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 198-224.
  • Alsalman, F.B., Tulbek, M., Nickerson, M., Ramaswamy, H.S. (2020). Evaluation and optimization of functional and antinutritional properties of aquafaba. Legume Science, 2(2): e30.
  • Amagliani, L., Silva, J. V., Saffon, M., Dombrowski, J. (2021). On the foaming properties of plant proteins: Current status and future opportunities. Trends in Food Science & Technology, 118, 261-272.
  • Ampofo, J., Ngadi, M. (2022). Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrasonics Sonochemistry, 84, 105955.
  • Aryee, A.N.A., Agyei, D., Udenigwe, C.C. (2018). Impact of processing on the chemistry and functionality of food proteins. In: Proteins in Food Processing, Rickey Y. Yada (ed.), 2nd edition. Woodhead Publishing, pp. 27-45.
  • Bangar, S.P., Esua, O.J., Sharma, N., Thirumdas, R. (2022). Ultrasound‐assisted modification of gelation properties of proteins: A review. Journal of Texture Studies, 53(6), 763-774.
  • Barbosa-Cánovas, G.V., Donsi, F., Yildiz, S., Candoğan, K., Pokhrel, P.R., Guadarrama-Lezama, A.Y. (2022). Nonthermal processing technologies for stabilization and enhancement of bioactive compounds in foods. Food Engineering Reviews, 1-37.
  • Bernardi, S., Lupatini-Menegotto, A.L., Kalschne, D.L., Moraes Flores, É.L., Bittencourt, P.R.S., Colla, E., Canan, C. (2021). Ultrasound: A suitable technology to improve the extraction and techno-functional properties of vegetable food proteins. Plant Foods for Human Nutrition, 76, 1-11.
  • Bhargava, N., Mor, R.S., Kumar, K., Sharanagat, V.S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293.
  • Burd, N.A., McKenna, C.F., Salvador, A.F., Paulussen, K.J., Moore, D.R. (2019). Dietary protein quantity, quality, and exercise are key to healthy living: a muscle-centric perspective across the lifespan. Frontiers in Nutrition, 83.
  • Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A. S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560.
  • Chittapalo, T., Noomhorm, A. (2009). Ultrasonic assisted alkali extraction of protein from defatted rice bran and properties of the protein concentrates. International Journal of Food Science & Technology, 44(9), 1843-1849.
  • Cui, L., Bandillo, N., Wang, Y., Ohm, J. B., Chen, B., Rao, J. (2020). Functionality and structure of yellow pea protein isolate as affected by cultivars and extraction pH. Food Hydrocolloids, 108, 106008.
  • Dabbour, M., He, R., Ma, H., Musa, A. (2018). Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. Journal of Food Process Engineering, 41(5), e12799.
  • Day, L., Cakebread, J.A., Loveday, S.M. (2022). Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends in Food Science & Technology, 119, 428-442.
  • Demirdöven, A. Baysal, T. (2020). Ultrases. Gıda Mühendisliğinde Isıl Olmayan Teknolojiler, Baysal, T. ve İçier, F. (eds.), Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., Ankara, 2. Baskı, s. 197-218.
  • Fărcaș, A.C., Socaci, S.A., Nemeș, S.A., Salanță, L.C., Chiș, M.S., Pop, C.R., Borşa, A., Diaconeasa, Z., Vodnar, D.C. (2022). Cereal Waste Valorization through Conventional and Current Extraction Techniques—An Up-to-Date Overview. Foods, 11(16), 2454.
  • Feyzi, S., Varidi, M., Zare, F., Varidi, M.J. (2015). Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties. Journal of the Science of Food and Agriculture, 95(15), 3165-3176.
  • Gao, K., Rao, J., Chen, B. (2022). Unraveling the mechanism by which high intensity ultrasound improves the solubility of commercial pea protein isolates. Food Hydrocolloids, 131, 107823.
  • Gharibzahedi, S.M.T., Smith, B. (2020). The functional modification of legume proteins by ultrasonication: A review. Trends in Food Science & Technology, 98, 107-116.
  • Golly, M.K., Ma, H., Yuqing, D., Dandan, L., Quaisie, J., Tuli, J.A., Mintah, B.K., Dzah, C.S. Agordoh, P.D. (2020). Effect of multi‐frequency countercurrent ultrasound treatment on extraction optimization, functional and structural properties of protein isolates from walnut (Juglans regia L.) meal. Journal of Food Biochemistry, 44(6), e13210.
  • Görgüç, A., Bircan, C., Yılmaz, F.M. (2019). Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chemistry, 283, 637-645.
  • Hermundsdottir, F., Aspelund, A. (2021). Sustainability innovations and firm competitiveness: A review. Journal of Cleaner Production, 280, 124715.
  • Jahan, K., Ashfaq, A., Younis, K., Yousuf, O., Islam, R.U. (2022). A review of the effects of ultrasound-assisted extraction factors on plant protein yield and functional properties. Journal of Food Measurement and Characterization, 16(4), 2875-2883.
  • Kamal, H., Ali, A., Manickam, S., Le, C.F. (2023). Impact of cavitation on the structure and functional quality of extracted protein from food sources–An overview. Food Chemistry, 407, 135071.
  • Kamal, H., Le, C.F., Salter, A.M., Ali, A. (2021). Extraction of protein from food waste: An overview of current status and opportunities. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2455-2475.
  • Karabulut, G., Yemiş, O. (2022). Modification of hemp seed protein isolate (Cannabis sativa L.) by high-intensity ultrasound treatment. Part 1: Functional properties. Food Chemistry, 375, 131843.
  • Karabulut, G., Yildiz, S., Karaca, A.C., Yemiş, O. (2023). Ultrasound and enzyme‐pretreated extraction for the valorization of pea pod proteins. Journal of Food Process Engineering, e14452.
  • Kumar, M., Tomar, M., Potkule, J., Verma, R., Punia, S., Mahapatra, A., ... Kennedy, J.F. (2021). Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids, 115, 106595.
  • Lam, A.C.Y., Can Karaca, A., Tyler, R.T., Nickerson, M.T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126-147.
  • Li, X., Qi, B., Zhang, S., Li, Y. (2023). Effects of ultrasonic treatment on the structural and functional properties of cactus (Opuntia ficus-indica) seed protein. Ultrasonics Sonochemistry, 106465.
  • Li, W., Yang, H., Coldea, T. E., Zhao, H. (2021). Modification of structural and functional characteristics of brewer's spent grain protein by ultrasound assisted extraction. LWT, 139, 110582
  • Liu, Y., Ma, X. Y., Liu, L. N., Xie, Y. P., Ke, Y. J., Cai, Z. J., Wu, G.J. (2019). Ultrasonic-assisted extraction and functional properties of wampee seed protein. Food Science and Technology, 39, 324-331.
  • Loveday, S.M. (2019). Food proteins: technological, nutritional, and sustainability attributes of traditional and emerging proteins. Annual Review of Food Science and Technology, 10, 311-339.
  • Lu, Z.X., He, J.F., Zhang, Y.C., Bing, D.J. (2020). Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition, 60(15), 2593-2605.
  • Ly, H.L., Tran, T.M.C., Tran, T.T.T., Ton, N.M.N., Le, V.V.M. (2018). Application of ultrasound to protein extraction from defatted rice bran. International Food Research Journal, 25(2), 695-701.
  • Ma, K.K., Greis, M., Lu, J., Nolden, A.A., McClements, D.J., Kinchla, A.J. (2022). Functional performance of plant proteins. Foods, 11(4), 594.
  • Malik, M.A., Saini, C.S. (2017). Gamma irradiation of alkali extracted protein isolate from dephenolized sunflower meal. LWT, 84, 204-211.
  • McClements, D.J. (2020). Future foods: Is it possible to design a healthier and more sustainable food supply?. Nutrition Bulletin, 45(3), 341-354.
  • Mellinas, C., Solaberrieta, I., Pelegrín, C.J., Jiménez, A., Garrigós, M.C. (2022). Valorization of Agro-Industrial Wastes by Ultrasound-Assisted Extraction as a Source of Proteins, Antioxidants and Cutin: A Cascade Approach. Antioxidants, 11(9), 1739.
  • Naik, M., Natarajan, V., Modupalli, N., Thangaraj, S., Rawson, A. (2022). Pulsed ultrasound assisted extraction of protein from defatted Bitter melon seeds (Momardica charantia L.) meal: Kinetics and quality measurements. LWT, 155, 112997.
  • Namugenyi, C., Nimmagadda, S.L., Reiners, T. (2019). Design of a SWOT analysis model and its evaluation in diverse digital business ecosystem contexts. Procedia Computer Science, 159, 1145-1154.
  • Nguyen, T.H., Le, V.V.M. (2019). Effects of technological parameters of ultrasonic treatment on the protein extraction yield from defatted peanut meal. International Food Research Journal, 26(3), 1079-1085.
  • Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S.O., Chuck-Hernández, C. (2017). Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: Effects in yield and functional properties of protein isolates. Food and Bioprocess Technology, 10, 543-555.
  • Osborne TB. (1908). Our present knowledge of plant proteins. Science 28:417–427
  • Özkan, G., Subaşi, B.G., Beştepe, S.K., Güven, E.Ç. (2022). Sürdürülebilir Gıda ve Tarımsal Atık Yönetimi. Çevre İklim ve Sürdürülebilirlik, 23(2), 145-160.
  • Özyurt, V.H., Tetik, I., Ötleş, S. (2021). Influence of process conditions on ultrasound‐assisted protein extraction from cold pressed tomato seed waste. Journal of Food Processing and Preservation, 45(12), e16079.
  • Panda, D., Manickam, S. (2019). Cavitation technology—The future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. Applied Sciences, 9(4), 766.
  • Pearce, K.N., Kinsella, J.E. (1978). Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3), 716-723.
  • Qiaoyun, C., Xinghong, N.I., Liang, Z., Zheng, T., Jin, L., Kang, S., Xuan, C., Xinghui, L. (2017). Optimization of protein extraction and decoloration conditions for tea residues. Horticultural Plant Journal, 3(4), 172-176.
  • Qiu, M., Wang, N., Pend, J., Li, Y., Li, L., Xie, X. (2023). Ultrasound‐assisted reverse micelle extraction and characterization of tea protein from tea residue. Journal of the Science of Food and Agriculture, 103(8), 4068-4076.
  • Rahman, M.M., Byanju, B., Grewell, D., Lamsal, B.P. (2020). High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry, 64, 105019.
  • Rahman, M.M., Lamsal, B.P. (2021). Ultrasound‐assisted extraction and modification of plant‐based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1457-1480.
  • Resendiz-Vazquez, J.A., Ulloa, J.A., Urías-Silvas, J.E., Bautista-Rosales, P.U., Ramírez-Ramírez, J.C., Rosas-Ulloa, P., González-Torres, L. (2017). Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrasonic Sonochemistry. 37, 436-444.
  • Sari, Y.W., Bruins, M.E., Sanders, J.P. (2013). Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Industrial Crops and Products, 43, 78-83.
  • Sari, Y.W., Mulder, W.J., Sanders, J.P., Bruins, M.E. (2015). Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal, 10(8), 1138-1157.
  • Sheng, L., Wang, Y., Chen, J., Zou, J., Wang, Q., Ma, M. (2018). Influence of high-intensity ultrasound on foaming and structural properties of egg white. Food Research International, 108, 604-610.
  • Soto-Sierra, L., Stoykova, P., Nikolov, Z. L. (2018). Extraction and fractionation of microalgae-based protein products. Algal Research, 36, 175-192.
  • Sun, L.H., Yu, F., Wang, Y.Y., Lv, S.W., He, L.Y. (2021). Effects of ultrasound extraction on the physicochemical and emulsifying properties of rice bran protein. International Journal of Food Engineering, 17(5), 327-335.
  • Tang, S.Q., Du, Q.H., Fu, Z. (2021). Ultrasonic treatment on physicochemical properties of water-soluble protein from Moringa oleifera seed. Ultrasonics Sonochemistry, 71, 105357.
  • Tanger, C., Engel, J., Kulozik, U. (2020). Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour. Food Hydrocolloids, 107, 105949.
  • Téllez-Morales, J. A., Hernández-Santo, B., Rodríguez-Miranda, J. (2020). Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrasonics Sonochemistry, 61, 104787.
  • Tiwari, A., Khawas, R. (2021). Food waste and agro by-products: A step towards food sustainability. In: Innovation in the food sector through the valorization of food and agro-food by-products, Ana Novo de Barros and Irene Gouvinhas (eds), IntechOpen. DOI: 10.5772/intechopen.96177
  • Tiwari, B.K., Mason, T.J. (2012). Ultrasound processing of fluid foods. In: Novel thermal and non-thermal technologies for fluid foods, Academic Press, pp. 135-165.
  • Tripathi, A.D., Mishra, R., Maurya, K.K., Singh, R.B., Wilson, D.W. (2019). Estimates for world population and global food availability for global health. In: The role of functional food security in global health, Academic Press, pp. 3-24.
  • TÜİK (Türkiye İstatistik Kurumu), (2021). Atık İstatistikleri, 2020. https://data.tuik.gov.tr/Bulten/Index?p=Atik%20Istatistikleri-2020-37198. (Erişim tarihi: 27.03.2023).
  • United Nations (2015). United Nations - The Millennium Development Goals Report. https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%201).pdf. Erişim Tarihi: 01.08.2023
  • Van Dijk, M., Morley, T., Rau, M. L., Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494-501.
  • Wang, F., Zhang, Y., Xu, L., Ma, H. (2020). An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. LWT, 127, 109348.
  • Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260-267.
  • Xue, F., Zhu, C., Liu, F., Wang, S., Liu, H., Li, C. (2018). Effects of high‐intensity ultrasound treatment on functional properties of plum (Pruni domesticae semen) seed protein isolate. Journal of the Science of Food and Agriculture, 98(15), 5690-5699.
  • Yagoub, A.A., Ma, M., Zhou, C. (2017). Ultrasonic-assisted extraction of protein from rapeseed (Brassica napus L.) meal: Optimization of extraction conditions and structural characteristics of the protein. International Food Research Journal, 24(2), 621.
  • Yao, Y., Pan, Y., Liu, S. (2020). Power ultrasound and its applications: A state-of-the-art review. Ultrasonics Sonochemistry, 62, 104722.
  • Yılmaz, E., Hüriyet, Z. (2017). Physico-chemical and functional properties of extracted capia pepperseed (Capsicum annuum L.) proteins. Waste and Biomass Valorization, 8, 871-881.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği, Gıda Sürdürülebilirliği, Gıda Teknolojileri
Bölüm Makaleler
Yazarlar

Sümeyye Gümüş 0000-0002-1086-9231

Semanur Yıldız 0000-0002-1845-7813

Yayımlanma Tarihi 14 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 49 Sayı: 1

Kaynak Göster

APA Gümüş, S., & Yıldız, S. (2024). ULTRASES PROSESİNİN BİTKİSEL ATIK VE YAN ÜRÜNLERDEN PROTEİN ELDESİNDE KULLANIMI VE PROTEİNLERİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ. Gıda, 49(1), 68-87. https://doi.org/10.15237/gida.GD23115
AMA Gümüş S, Yıldız S. ULTRASES PROSESİNİN BİTKİSEL ATIK VE YAN ÜRÜNLERDEN PROTEİN ELDESİNDE KULLANIMI VE PROTEİNLERİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ. GIDA. Şubat 2024;49(1):68-87. doi:10.15237/gida.GD23115
Chicago Gümüş, Sümeyye, ve Semanur Yıldız. “ULTRASES PROSESİNİN BİTKİSEL ATIK VE YAN ÜRÜNLERDEN PROTEİN ELDESİNDE KULLANIMI VE PROTEİNLERİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda 49, sy. 1 (Şubat 2024): 68-87. https://doi.org/10.15237/gida.GD23115.
EndNote Gümüş S, Yıldız S (01 Şubat 2024) ULTRASES PROSESİNİN BİTKİSEL ATIK VE YAN ÜRÜNLERDEN PROTEİN ELDESİNDE KULLANIMI VE PROTEİNLERİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ. Gıda 49 1 68–87.
IEEE S. Gümüş ve S. Yıldız, “ULTRASES PROSESİNİN BİTKİSEL ATIK VE YAN ÜRÜNLERDEN PROTEİN ELDESİNDE KULLANIMI VE PROTEİNLERİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ”, GIDA, c. 49, sy. 1, ss. 68–87, 2024, doi: 10.15237/gida.GD23115.
ISNAD Gümüş, Sümeyye - Yıldız, Semanur. “ULTRASES PROSESİNİN BİTKİSEL ATIK VE YAN ÜRÜNLERDEN PROTEİN ELDESİNDE KULLANIMI VE PROTEİNLERİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda 49/1 (Şubat 2024), 68-87. https://doi.org/10.15237/gida.GD23115.
JAMA Gümüş S, Yıldız S. ULTRASES PROSESİNİN BİTKİSEL ATIK VE YAN ÜRÜNLERDEN PROTEİN ELDESİNDE KULLANIMI VE PROTEİNLERİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ. GIDA. 2024;49:68–87.
MLA Gümüş, Sümeyye ve Semanur Yıldız. “ULTRASES PROSESİNİN BİTKİSEL ATIK VE YAN ÜRÜNLERDEN PROTEİN ELDESİNDE KULLANIMI VE PROTEİNLERİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda, c. 49, sy. 1, 2024, ss. 68-87, doi:10.15237/gida.GD23115.
Vancouver Gümüş S, Yıldız S. ULTRASES PROSESİNİN BİTKİSEL ATIK VE YAN ÜRÜNLERDEN PROTEİN ELDESİNDE KULLANIMI VE PROTEİNLERİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ. GIDA. 2024;49(1):68-87.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/