Derleme
BibTex RIS Kaynak Göster

ALTERNATİF PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLER VE TÜKETİCİ KABULÜ

Yıl 2024, Cilt: 49 Sayı: 3, 567 - 579, 15.06.2024
https://doi.org/10.15237/gida.GD24023

Öz

Böcekler antik çağlardan beri birçok kültürde yerel mutfağın bir parçası olmuştur. Dünyanın birçok bölgesinde hali hazırda tüketilmekte olan böceklerin besin içeriği, onların alternatif protein kaynağı olarak da dikkat çekmesine sebep olmuştur. Dünya nüfusunun yaklaşık %10’u gıdaya erişim konusunda problem yaşamakta, neredeyse 1 milyar insan yetersiz beslenmeye bağlı hastalıklarla karşı karşıya gelmektedir. Artan nüfusun gıda talebini karşılamak için mevcut gıda üretim modeli yetersiz kaldığı gibi, nüfusa bağlı olarak artan tarımsal üretim de atmosfere daha fazla sera gazı salınımına sebep olarak küresel ısınmayı hızlandırmaktadır. Böcekler yüksek protein içerikleri sayesinde nüfusun protein ihtiyacını karşılamak için geleneksel hayvan proteinlerinin yerini alabilecek potansiyele sahiptir. Ancak bu hususta yetkili otoritelerin gıda güvenliği endişeleri olduğu gibi, tüketici kabulünde de zorluklar bulunmaktadır. Üretim modelleri ve ileri işleme teknikleri ile gıda güvenliği endişelerinin, farklı pazarlama ve market stratejileri ile de tüketici kabulünde yaşanan zorlukların üstesinden gelmek mümkündür. Bu derlemede alternatif protein kaynağı olarak yenilebilir böceklerin potansiyeli ve yenilebilir böceklere olan tüketici tutumu değerlendirilmiştir.

Etik Beyan

Yazarlar bu yazı için gerçek, potansiyel veya algılanan çıkar çatışması olmadığını beyan etmişlerdir.

Kaynakça

  • Acosta-Estrada, B. A., Reyes, A., Rosell, C. M., Rodrigo, D., Ibarra-Herrera, C. C. (2021). Benefits and Challenges in the Incorporation of Insects in Food Products. Frontiers in Nutrition, 8(June). https://doi.org/10.3389/ fnut.2021.687712
  • Ahn, M. Y., Han, J. W., Hwang, J. S., Yun, E. Y., Lee, B. M. (2014). Anti-inflammatory effect of glycosaminoglycan derived from gryllus bimaculatus (A type of cricket, insect) on adjuvant-treated chronic arthritis rat model. Journal of Toxicology and Environmental Health, 77(22–24): 1332–1345. https://doi.org/10.1080/ 15287394.2014.951591
  • Ahn, M. Y., Kim, B. J., Kim, H. J., Jin, J. M., Yoon, H. J., Hwang, J. S., Lee, B. M. (2020). Anti-diabetic activity of field cricket glycosaminoglycan by ameliorating oxidative stress. BMC complementary medicine and therapies, 20(1): 232. https://doi.org/10.1186/s12906-020-03027-x
  • Almeida, A., Torres, J., Rodrigues, I. (2023). The Impact of Meat Consumption on Human Health, the Environment and Animal Welfare: Perceptions and Knowledge of Pre-Service Teachers. Societies, 13(6). https://doi.org/ 10.3390/soc13060143
  • Amadi, E. N., Kiin-Kabari, D. B. (2016). Nutritional composition and microbiology of some edible insects commonly eaten in Africa, hurdles and future prospects: A critical review. Journal of Food: Microbiology, Safety & Hygiene, 1(1): 1000107. http://dx.doi.org/10.4172/2476-2059.1000107
  • Anonymous. Regulatıon (Eu) 2015/2283 of The European Parliament And of The Council. , The Official Journal of the European Union, (2015).
  • Anonymous. (2015b). Risk profile related to production and consumption of insects as food and feed. EFSA Journal, 13(10), 4257. https://doi.org/10.2903/j.efsa.2015.4257
  • Ardoin, R., Prinyawiwatkul, W. (2021). Consumer perceptions of insect consumption: a review of western research since 2015. International Journal of Food Science and Technology, 56(10): 4942–4958. https://doi.org/10.1111/ijfs.15167
  • Aznar-Cervantes, S. D., Monteagudo Santesteban, B., Cenis, J. L. (2021). Products of sericulture and their hypoglycemic action evaluated by using the silkworm, Bombyx mori (Lepidoptera: Bombycidae), as a model. Insects, 12(12): 1059. https://doi.org/10.3390/ insects12121059
  • Baiano, A. (2020). Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science and Technology, 100(03): 35–50. https://doi.org/10.1016/j.tifs.2020.03.040
  • Banach, J. L., van der Berg, J. P., Kleter, G., van Bokhorst-van de Veen, H., Bastiaan-Net, S., Pouvreau, L., van Asselt, E. D. (2022). Alternative proteins for meat and dairy replacers: Food safety and future trends. Critical Reviews in Food Science and Nutrition, 63(32): 11063–11080. https://doi.org/ 10.1080/10408398.2022.2089625
  • Barton, A., Richardson, C. D., McSweeney, M. B. (2020). Consumer attitudes toward entomophagy before and after evaluating cricket (Acheta domesticus)-based protein powders. Journal of Food Science, 85(3), 781–788. https://doi.org/ 10.1111/1750-3841.15043
  • Berners-Lee, M., Kennelly, C., Watson, R., Hewitt, C. N. (2018). Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene, 6(52). https://doi.org/10.1525/elementa.310
  • Bruni, L., Pastorelli, R., Viti, C., Gasco, L., Parisi, G. (2018). Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture, 487(July): 56–63. https://doi.org/10.1016/ j.aquaculture.2018.01.006
  • Cardoso Alves, S., Díaz-Ruiz, E., Lisboa, B., Sharma, M., Mussatto, S. I., Thakur, V. K., Chandel, A. K. (2023). Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food Research International, 166(February): 112596. https://doi.org/10.1016/j.foodres.2023.112596
  • Charlebois, S., Sterling, B., Haratifar, S., Naing, S. K. (2014). Comparison of Global Food Traceability Regulations and Requirements. Comprehensive Reviews in Food Science and Food Safety, 13(5): 1104–1123. https://doi.org/10.1111/ 1541-4337.12101
  • Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3): 198–209. https://doi.org/10.1038/s43016-021-00225-9
  • Cunha, N., Andrade, V., Ruivo, P., Pinto, P. (2023). Effects of Insect Consumption on Human Health: A Systematic Review of Human Studies. Nutrients, 15(14): 1–23. https://doi.org/ 10.3390/nu15143076
  • D’Antonio, V., Battista, N., Sacchetti, G., Di Mattia, C., Serafini, M. (2023). Functional properties of edible insects: a systematic review. Nutrition Research Reviews, 36(1): 98–119. https://doi.org/10.1017/S0954422421000366
  • Dagevos, H. (2021). A Literature Review of Consumer Research on Edible Insects: Recent Evidence and New Vistas from 2019 Studies. Journal of Insects as Food and Feed, 7(3): 249–259. https://doi.org/10.3920/JIFF2020.0052
  • de Gier, S., Verhoeckx, K. (2018). Insect (food) allergy and allergens. Molecular Immunology, 100(May), 82–106. https://doi.org/10.1016/ j.molimm.2018.03.015
  • de Jong, B., Nikolik, G. (2021). No Longer Crawling: Insect Protein to Come of Age in the 2020s. Tarihinde adresinden erişildi RaboResearch website: https://research.rabobank.com/far/en/sectors/animal-protein/insect-protein-to-come-of-age-in-the-2020s.html
  • Doğan, M., Özaltın, E. (2022). Birleşmiş Milletler’in küresel beslenme ve gıda güvencesi politikalarının değerlendirilmesi. Tourism and Recreation, 4(2): 81–88. https://doi.org/ 10.53601/tourismandrecreation.1191409
  • Ergün, O. F., Bayram, B. (2021). Türkiye’de Hayvancılık Sektöründe Yaşanan Değişimler. Journal of Bahri Dagdas Animal Research, 10(2): 2687–3745.
  • González, N., Marquès, M., Nadal, M., Domingo, J. L. (2020). Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Research International, 137(April): 109341. https://doi.org/10.1016/ j.foodres.2020.109341
  • Grasso, A. C., Hung, Y., Olthof, M. R., Verbeke, W., Brouwer, I. A. (2019). Older consumers’ readiness to accept alternative, more sustainable protein sources in the European Union. Nutrients, 11(8). https://doi.org/10.3390/nu11081904
  • Grossmann, L., Weiss, J. (2021). Alternative protein sources as technofunctional food ingredients. Annual Review of Food Science and Technology, 12: 93-117. https://doi.org/10.1146/ annurev-food-062520-093642
  • Halloran, A., Vantomme, P., Hanboonsong, Y., Ekesi, S. (2015). Regulating edible insects: the challenge of addressing food security, nature conservation, and the erosion of traditional food culture. Food Security, 7(3): 739–746. https://doi.org/10.1007/s12571-015-0463-8
  • Han, X., Yang, H., Rao, S., Liu, G., Hu, M., Zeng, B., … Liu, G. (2018). The Maillard Reaction Reduced the Sensitization of Tropomyosin and Arginine Kinase from Scylla paramamosain, Simultaneously. Journal of Agricultural and Food Chemistry, 66(11): 2934-2943. https://doi.org/ 10.1021/acs.jafc.7b05195
  • Henderson, B. (2022). Food Safety Aspects of Edible Insects. https://www.food-safety.com/articles/8126-food-safety-aspects-of-edible-insects (Accessed: 16 December 2023).
  • Hlongwane, Z. T., Slotow, R., Munyai, T. C. (2021). Indigenous knowledge about consumption of edible insects in South Africa. Insects, 12(1): 1–19. https://doi.org/10.3390/ insects12010022
  • Imathiu, S. (2020). Benefits and food safety concerns associated with consumption of edible insects. NFS Journal, 18(November): 1–11. https://doi.org/10.1016/j.nfs.2019.11.002
  • Jantzen, A., Silva, D. A., De, L. M. (2019). Edible insects: an alternative of nutritional, functional and bioactive compounds. Food Chemistry, 126022. https://doi.org/10.1016/j.foodchem.2019.126022
  • Ji, X., Wang, J., Ma, A., Feng, D., He, Y., Yan, W. (2022). Effects of silkworm pupa protein on apoptosis and energy metabolism in human colon cancer DLD-1 cells. Food Science and Human Wellness, 11(5): 1171-1176. https://doi.org/ 10.1016/j.fshw.2022.04.011
  • Kim, S. R., Hong, M. Y., Park, S. W., Choi, K. H., Yun, E. Y., Goo, T. W., Hwang, J. S. (2010). Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio xuthus. Molecules and cells, 29(4): 419-424. https://doi/10.1007/s10059-010-0050-y
  • Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., Nout, M. R. (2012). Microbiological aspects of processing and storage of edible insects. Food control, 26(2): 628-631. http://dx.doi.org/ 10.1016/j.foodcont.2012.02.013
  • Kröger, T., Dupont, J., Büsing, L., Fiebelkorn, F. (2022). Acceptance of Insect-Based Food Products in Western Societies: A Systematic Review. Frontiers in Nutrition, 8 (February): 1–26. https://doi.org/10.3389/fnut.2021.759885
  • Kusmayadi, A., Leong, Y. K., Yen, H. W., Huang, C. Y., Chang, J. S. (2021). Microalgae as sustainable food and feed sources for animals and humans – Biotechnological and environmental aspects. Chemosphere, 271: 129800. https://doi.org/10.1016/j.chemosphere.2021.129800
  • La Barbera, F., Amato, M., Verneau, F. (2023). Beyond Meat: Alternative Sources of Proteins to Feed the World. Nutrients, 15(13), 2–5. https://doi.org/10.3390/nu15132899
  • Lähteenmäki-Uutela, A., Marimuthu, S. B., Meijer, N. (2021). Regulations on insects as food and feed: a global comparison. Journal of Insects as Food and Feed, 7(5): 849–856. https://doi.org/10.3920/JIFF2020.0066
  • Li, X., Xie, H., Chen, Y., Lang, M., Chen, Y., Shi, L. (2018). Silkworm pupa protein hydrolysate induces mitochondria-dependent apoptosis and S phase cell cycle arrest in human gastric cancer SGC-7901 cells. International Journal of Molecular Sciences, 19 (4): 1013. https://doi:10.3390/ ijms19041013
  • Liceaga, A. M., Aguilar-Toalá, J. E., Vallejo-Cordoba, B., González-Córdova, A. F., Hernández-Mendoza, A. (2022). Insects as an Alternative Protein Source. Annual Review of Food Science and Technology, 13(1): 19–34. https://doi.org/10.1146/annurev-food-052720-112443
  • Lucchese-Cheung, T., Aguiar, L. K. De, Da Silva, R. F. F., Pereira, M. W. (2020). Determinants of the Intention to Consume Edible Insects in Brazil. Journal of Food Products Marketing, 26(4): 297–316. https://doi.org/10.1080/ 10454446.2020.1766626
  • Mancini, S., Moruzzo, R., Riccioli, F., Paci, G. (2019). European consumers’ readiness to adopt insects as food. A review. Food Research International, 122(January): 661–678. https://doi.org/10.1016/j.foodres.2019.01.041
  • Marono, S., Loponte, R., Lombardi, P., Vassalotti, G., Pero, M. E., Russo, F., Bovera, F. (2017). Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poultry Science, 96(6): 1783–1790. https://doi.org/10.3382/ps/pew461
  • McClements, D. J. (2020). Future foods: Is it possible to design a healthier and more sustainable food supply? Nutrition Bulletin, 45(3): 341–354. https://doi.org/10.1111/nbu.12457
  • Melgar-Lalanne, G., Hernández-Álvarez, A. J., Salinas-Castro, A. (2019). Edible Insects Processing: Traditional and Innovative Technologies. Comprehensive Reviews in Food Science and Food Safety, 18: 1166–1191. https://doi.org/10.1111/1541-4337.12463
  • Morrison, O. (2019). Vegan trend boosts potential for insect protein in food products. https://www.foodnavigator.com/Article/2019/06/19/Vegan-trend-boosts-potential-for-insect-protein-in-food-products (Accessed: 14 December 2023).
  • Murefu, T. R., Macheka, L., Musundire, R., Manditsera, F. A. (2019). Safety of wild harvested and reared edible insects: A review. Food Control, 101(March): 209–224. https://doi.org/10.1016/ j.foodcont.2019.03.003
  • Newsome, R., Balestrini, C. G., Baum, M. D., Corby, J., Fisher, W., Goodburn, K., Yiannas, F. (2014). Applications and perceptions of date labeling of food. Comprehensive Reviews in Food Science and Food Safety, 13(4): 745–769. https://doi.org/10.1111/1541-4337.12086
  • Nowak, V., Persijn, D., Rittenschober, D., Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193: 39–46. https://doi.org/10.1016/ j.foodchem.2014.10.114
  • Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H., Wu, X. (2022). Potential health benefits of edible insects. Critical Reviews in Food Science and Nutrition, 62(13): 3499–3508. https://doi.org/ 10.1080/10408398.2020.1867053
  • Okyere, A. A. (2023). Food Safety Management of Insect-Based Foods. Food Safety Management (ss. 223–233). https://doi.org/10.1016/B978-0-12-820013-1.00036-X
  • Orkusz, A. (2021). Edible insects versus meat—nutritional comparison: Knowledge of their composition is the key to good health. Nutrients, 13(4). https://doi.org/10.3390/nu13041207
  • Pambo, K. O., Okello, J. J., Mbeche, R. M., Kinyuru, J. N., Alemu, M. H. (2018). The role of product information on consumer sensory evaluation, expectations, experiences and emotions of cricket-flour-containing buns. Food Research International, 106(October): 532–541. https://doi.org/10.1016/j.foodres.2018.01.011
  • Patel, S., Suleria, H. A. R., Rauf, A. (2019). Edible insects as innovative foods: Nutritional and functional assessments. Trends in Food Science and Technology, 86(July): 352–359. https://doi.org/ 10.1016/j.tifs.2019.02.033
  • Poma, G., Cuykx, M., Amato, E., Calaprice, C., Focant, J. F., Covaci, A. (2017). Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food and chemical toxicology, 100, 70-79. https://doi.org/10.1016/j.fct.2016.12.006
  • Pressman, P., Clemens, R., Hayes, W., Reddy, C. (2017). Food additive safety. Toxicology Research and Application, 1, 239784731772357. https://doi.org/10.1177/2397847317723572
  • Qu, Y., Mueller-Cajar, O., Yamori, W. (2023). Improving plant heat tolerance through modification of Rubisco activase in C3 plants to secure crop yield and food security in a future warming world. Journal of Experimental Botany, 74(2): 591–599. https://doi.org/10.1093/ jxb/erac340
  • Raheem, D., Carrascosa, C., Oluwole, O. B., Nieuwland, M., Saraiva, A., Millán, R., Raposo, A. (2019). Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Critical Reviews in Food Science and Nutrition, 59(14): 2169–2188. https://doi.org/10.1080/ 10408398.2018.1440191
  • Rezvi, H. U. A., Tahjib-Ul-Arif, M., Azim, M. A., Tumpa, T. A., Tipu, M. M. H., Najnine, F., Brestič, M. (2023). Rice and food security: Climate change implications and the future prospects for nutritional security. Food and Energy Security, 12(1): 1–17. https://doi.org/10.1002/fes3.430
  • Ritchie, H. (2023). The world population is changing: For the first time there are more people over 64 than children younger than 5. https://ourworldindata.org/population-aged-65-outnumber-children?trk=public_post_comment-text (Accessed: 13 December 2023)
  • Sanchez-Sabate, R., Sabaté, J. (2019). Consumer attitudes towards environmental concerns of meat consumption: A systematic review. International Journal of Environmental Research and Public Health, 16(7). https://doi.org/ 10.3390/ijerph16071220
  • Siddiqui, S. A., Tettey, E., Yunusa, B. M., Ngah, N., Debrah, S. K., Yang, X., Shah, M. A. (2023). Legal situation and consumer acceptance of insects being eaten as human food in different nations across the world–A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 22(6): 4786–4830. https://doi.org/ 10.1111/1541-4337.13243
  • Sobczak, P., Grochowicz, J., Łusiak, P., Żukiewicz-Sobczak, W. (2023). Development of Alternative Protein Sources in Terms of a Sustainable System. Sustainability (Switzerland), 15(16). https://doi.org/10.3390/su151612111
  • Stull, V. J. (2021). Impacts of insect consumption on human health. Journal of Insects as Food and Feed, 7(5): 695–713. https://doi.org/10.3920/ JIFF2020.0115
  • Tao, J., Li, Y. O. (2018). Edible insects as a means to address global malnutrition and food insecurity issues. Food Quality and Safety, 2(1): 17–26. https://doi.org/10.1093/fqsafe/fyy001
  • Terin, M., Bilgic, A. (2018). Türkiye ’ de Hanelerin Tavuk Eti Tüketim Harcamalar ı na Etki Eden Faktörlerin İkili Bağımlı Heckman Örneklem Seçicilik Modeli ile Analizi. 4. Uluslar Arası Beyaz Et Kongresi, 26(30): 198-206.
  • Turck, D., Bresson, J., Burlingame, B., Dean, T., Fairweather‐Tait, S., Heinonen, M., van Loveren, H. (2021). Guidance on the preparation and submission of an application for authorisation of a novel food in the context of Regulation (EU) 2015/22831 (Revision 1)2. EFSA Journal, 19(3). https://doi.org/10.2903/j.efsa.2021.6555
  • van den Heuvel, E., Newbury, A., Appleton, K. M. (2019). The psychology of nutrition with advancing age: Focus on food neophobia. Nutrients, 11(1): 6–8. https://doi.org/ 10.3390/nu11010151
  • van Huis, A., Oonincx, D. G. A. B., Rojo, S., Tomberlin, J. K. (2020). Insects as feed : house fly or black soldier fly ?. Journal of Insects as Food and Feed, 6(3): 221-229. https://doi.org/ 10.3920/JIFF2020.x003
  • van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E., de Boer, I. J. M. (2016). Global food supply: land use efficiency of livestock systems. International Journal of Life Cycle Assessment, 21(5): 747–758. https://doi.org/ 10.1007/s11367-015-0944-1
  • Vangsoe, M. T., Thogersen, R., Bertram, H. C., Heckmann, L. H. L., Hansen, M. (2018). Ingestion of insect protein isolate enhances blood amino acid concentrations similar to soy protein in a human trial. Nutrients, 10(10). https://doi.org/10.3390/nu10101357
  • Wang, J., Tao, J., Chu, M. (2020). Behind the label: Chinese consumers’ trust in food certification and the effect of perceived quality on purchase intention. Food Control, 108(April). https://doi.org/10.1016/j.foodcont.2019.106825
  • Wang, W., Wang, N., Zhou, Y., Zhang, Y., Xu, L., Xu, J., Feng, F., He, G. (2011). Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin I-converting enzyme. European Food Research and Technology, 232: 29-38. https://10.1007/s00217-010-1358-8
  • Wang, W., Wang, N., Zhang, Y. (2014). Antihypertensive properties on spontaneously hypertensive rats of peptide hydrolysates from silkworm pupae protein. Food and Nutrition Sciences, 5: 1202-1211. https://dx.doi.org/10.4236/ fns.2014.513131
  • Yang, J., Zhou, S., Kuang, H., Tang, C., Song, J. (2023). Edible insects as ingredients in food products: nutrition, functional properties, allergenicity of insect proteins, and processing modifications. Critical Reviews in Food Science and Nutrition, 0(0), 1–23. https://doi.org/10.1080/ 10408398.2023.2223644

EDIBLE INSECTS AS ALTERNATIVE PROTEIN SOURCES AND CONSUMER ACCEPTANCE

Yıl 2024, Cilt: 49 Sayı: 3, 567 - 579, 15.06.2024
https://doi.org/10.15237/gida.GD24023

Öz

Insects have been a part of local cuisine in many cultures since ancient times. The nutritional content of insects, which are currently consumed in many parts of the world, has attracted attention as an alternative protein source. Approximately 10% of the world's population has problems accessing food, and almost 1 billion people face diseases related to malnutrition. Just as the current food production model is insufficient to meet the food demand of the increasing population, increasing agricultural production in conjuction with population growth accelerates global warming by causing more greenhouse gas emissions into the atmosphere. Insects have the potential to replace traditional animal proteins to supply the protein requirements of the population because of their high protein content. However, in this regard, the competent authorities have food safety concerns, as well as difficulties in consumer acceptance. It is possible to overcome food safety concerns with production models and advanced processing techniques as well as the difficulties experienced in consumer acceptance with different marketing and market strategies. In this review, the potential of edible insects as an alternative protein source and consumer attitude towards edible insects were evaluated.

Kaynakça

  • Acosta-Estrada, B. A., Reyes, A., Rosell, C. M., Rodrigo, D., Ibarra-Herrera, C. C. (2021). Benefits and Challenges in the Incorporation of Insects in Food Products. Frontiers in Nutrition, 8(June). https://doi.org/10.3389/ fnut.2021.687712
  • Ahn, M. Y., Han, J. W., Hwang, J. S., Yun, E. Y., Lee, B. M. (2014). Anti-inflammatory effect of glycosaminoglycan derived from gryllus bimaculatus (A type of cricket, insect) on adjuvant-treated chronic arthritis rat model. Journal of Toxicology and Environmental Health, 77(22–24): 1332–1345. https://doi.org/10.1080/ 15287394.2014.951591
  • Ahn, M. Y., Kim, B. J., Kim, H. J., Jin, J. M., Yoon, H. J., Hwang, J. S., Lee, B. M. (2020). Anti-diabetic activity of field cricket glycosaminoglycan by ameliorating oxidative stress. BMC complementary medicine and therapies, 20(1): 232. https://doi.org/10.1186/s12906-020-03027-x
  • Almeida, A., Torres, J., Rodrigues, I. (2023). The Impact of Meat Consumption on Human Health, the Environment and Animal Welfare: Perceptions and Knowledge of Pre-Service Teachers. Societies, 13(6). https://doi.org/ 10.3390/soc13060143
  • Amadi, E. N., Kiin-Kabari, D. B. (2016). Nutritional composition and microbiology of some edible insects commonly eaten in Africa, hurdles and future prospects: A critical review. Journal of Food: Microbiology, Safety & Hygiene, 1(1): 1000107. http://dx.doi.org/10.4172/2476-2059.1000107
  • Anonymous. Regulatıon (Eu) 2015/2283 of The European Parliament And of The Council. , The Official Journal of the European Union, (2015).
  • Anonymous. (2015b). Risk profile related to production and consumption of insects as food and feed. EFSA Journal, 13(10), 4257. https://doi.org/10.2903/j.efsa.2015.4257
  • Ardoin, R., Prinyawiwatkul, W. (2021). Consumer perceptions of insect consumption: a review of western research since 2015. International Journal of Food Science and Technology, 56(10): 4942–4958. https://doi.org/10.1111/ijfs.15167
  • Aznar-Cervantes, S. D., Monteagudo Santesteban, B., Cenis, J. L. (2021). Products of sericulture and their hypoglycemic action evaluated by using the silkworm, Bombyx mori (Lepidoptera: Bombycidae), as a model. Insects, 12(12): 1059. https://doi.org/10.3390/ insects12121059
  • Baiano, A. (2020). Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science and Technology, 100(03): 35–50. https://doi.org/10.1016/j.tifs.2020.03.040
  • Banach, J. L., van der Berg, J. P., Kleter, G., van Bokhorst-van de Veen, H., Bastiaan-Net, S., Pouvreau, L., van Asselt, E. D. (2022). Alternative proteins for meat and dairy replacers: Food safety and future trends. Critical Reviews in Food Science and Nutrition, 63(32): 11063–11080. https://doi.org/ 10.1080/10408398.2022.2089625
  • Barton, A., Richardson, C. D., McSweeney, M. B. (2020). Consumer attitudes toward entomophagy before and after evaluating cricket (Acheta domesticus)-based protein powders. Journal of Food Science, 85(3), 781–788. https://doi.org/ 10.1111/1750-3841.15043
  • Berners-Lee, M., Kennelly, C., Watson, R., Hewitt, C. N. (2018). Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene, 6(52). https://doi.org/10.1525/elementa.310
  • Bruni, L., Pastorelli, R., Viti, C., Gasco, L., Parisi, G. (2018). Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture, 487(July): 56–63. https://doi.org/10.1016/ j.aquaculture.2018.01.006
  • Cardoso Alves, S., Díaz-Ruiz, E., Lisboa, B., Sharma, M., Mussatto, S. I., Thakur, V. K., Chandel, A. K. (2023). Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food Research International, 166(February): 112596. https://doi.org/10.1016/j.foodres.2023.112596
  • Charlebois, S., Sterling, B., Haratifar, S., Naing, S. K. (2014). Comparison of Global Food Traceability Regulations and Requirements. Comprehensive Reviews in Food Science and Food Safety, 13(5): 1104–1123. https://doi.org/10.1111/ 1541-4337.12101
  • Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3): 198–209. https://doi.org/10.1038/s43016-021-00225-9
  • Cunha, N., Andrade, V., Ruivo, P., Pinto, P. (2023). Effects of Insect Consumption on Human Health: A Systematic Review of Human Studies. Nutrients, 15(14): 1–23. https://doi.org/ 10.3390/nu15143076
  • D’Antonio, V., Battista, N., Sacchetti, G., Di Mattia, C., Serafini, M. (2023). Functional properties of edible insects: a systematic review. Nutrition Research Reviews, 36(1): 98–119. https://doi.org/10.1017/S0954422421000366
  • Dagevos, H. (2021). A Literature Review of Consumer Research on Edible Insects: Recent Evidence and New Vistas from 2019 Studies. Journal of Insects as Food and Feed, 7(3): 249–259. https://doi.org/10.3920/JIFF2020.0052
  • de Gier, S., Verhoeckx, K. (2018). Insect (food) allergy and allergens. Molecular Immunology, 100(May), 82–106. https://doi.org/10.1016/ j.molimm.2018.03.015
  • de Jong, B., Nikolik, G. (2021). No Longer Crawling: Insect Protein to Come of Age in the 2020s. Tarihinde adresinden erişildi RaboResearch website: https://research.rabobank.com/far/en/sectors/animal-protein/insect-protein-to-come-of-age-in-the-2020s.html
  • Doğan, M., Özaltın, E. (2022). Birleşmiş Milletler’in küresel beslenme ve gıda güvencesi politikalarının değerlendirilmesi. Tourism and Recreation, 4(2): 81–88. https://doi.org/ 10.53601/tourismandrecreation.1191409
  • Ergün, O. F., Bayram, B. (2021). Türkiye’de Hayvancılık Sektöründe Yaşanan Değişimler. Journal of Bahri Dagdas Animal Research, 10(2): 2687–3745.
  • González, N., Marquès, M., Nadal, M., Domingo, J. L. (2020). Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Research International, 137(April): 109341. https://doi.org/10.1016/ j.foodres.2020.109341
  • Grasso, A. C., Hung, Y., Olthof, M. R., Verbeke, W., Brouwer, I. A. (2019). Older consumers’ readiness to accept alternative, more sustainable protein sources in the European Union. Nutrients, 11(8). https://doi.org/10.3390/nu11081904
  • Grossmann, L., Weiss, J. (2021). Alternative protein sources as technofunctional food ingredients. Annual Review of Food Science and Technology, 12: 93-117. https://doi.org/10.1146/ annurev-food-062520-093642
  • Halloran, A., Vantomme, P., Hanboonsong, Y., Ekesi, S. (2015). Regulating edible insects: the challenge of addressing food security, nature conservation, and the erosion of traditional food culture. Food Security, 7(3): 739–746. https://doi.org/10.1007/s12571-015-0463-8
  • Han, X., Yang, H., Rao, S., Liu, G., Hu, M., Zeng, B., … Liu, G. (2018). The Maillard Reaction Reduced the Sensitization of Tropomyosin and Arginine Kinase from Scylla paramamosain, Simultaneously. Journal of Agricultural and Food Chemistry, 66(11): 2934-2943. https://doi.org/ 10.1021/acs.jafc.7b05195
  • Henderson, B. (2022). Food Safety Aspects of Edible Insects. https://www.food-safety.com/articles/8126-food-safety-aspects-of-edible-insects (Accessed: 16 December 2023).
  • Hlongwane, Z. T., Slotow, R., Munyai, T. C. (2021). Indigenous knowledge about consumption of edible insects in South Africa. Insects, 12(1): 1–19. https://doi.org/10.3390/ insects12010022
  • Imathiu, S. (2020). Benefits and food safety concerns associated with consumption of edible insects. NFS Journal, 18(November): 1–11. https://doi.org/10.1016/j.nfs.2019.11.002
  • Jantzen, A., Silva, D. A., De, L. M. (2019). Edible insects: an alternative of nutritional, functional and bioactive compounds. Food Chemistry, 126022. https://doi.org/10.1016/j.foodchem.2019.126022
  • Ji, X., Wang, J., Ma, A., Feng, D., He, Y., Yan, W. (2022). Effects of silkworm pupa protein on apoptosis and energy metabolism in human colon cancer DLD-1 cells. Food Science and Human Wellness, 11(5): 1171-1176. https://doi.org/ 10.1016/j.fshw.2022.04.011
  • Kim, S. R., Hong, M. Y., Park, S. W., Choi, K. H., Yun, E. Y., Goo, T. W., Hwang, J. S. (2010). Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio xuthus. Molecules and cells, 29(4): 419-424. https://doi/10.1007/s10059-010-0050-y
  • Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., Nout, M. R. (2012). Microbiological aspects of processing and storage of edible insects. Food control, 26(2): 628-631. http://dx.doi.org/ 10.1016/j.foodcont.2012.02.013
  • Kröger, T., Dupont, J., Büsing, L., Fiebelkorn, F. (2022). Acceptance of Insect-Based Food Products in Western Societies: A Systematic Review. Frontiers in Nutrition, 8 (February): 1–26. https://doi.org/10.3389/fnut.2021.759885
  • Kusmayadi, A., Leong, Y. K., Yen, H. W., Huang, C. Y., Chang, J. S. (2021). Microalgae as sustainable food and feed sources for animals and humans – Biotechnological and environmental aspects. Chemosphere, 271: 129800. https://doi.org/10.1016/j.chemosphere.2021.129800
  • La Barbera, F., Amato, M., Verneau, F. (2023). Beyond Meat: Alternative Sources of Proteins to Feed the World. Nutrients, 15(13), 2–5. https://doi.org/10.3390/nu15132899
  • Lähteenmäki-Uutela, A., Marimuthu, S. B., Meijer, N. (2021). Regulations on insects as food and feed: a global comparison. Journal of Insects as Food and Feed, 7(5): 849–856. https://doi.org/10.3920/JIFF2020.0066
  • Li, X., Xie, H., Chen, Y., Lang, M., Chen, Y., Shi, L. (2018). Silkworm pupa protein hydrolysate induces mitochondria-dependent apoptosis and S phase cell cycle arrest in human gastric cancer SGC-7901 cells. International Journal of Molecular Sciences, 19 (4): 1013. https://doi:10.3390/ ijms19041013
  • Liceaga, A. M., Aguilar-Toalá, J. E., Vallejo-Cordoba, B., González-Córdova, A. F., Hernández-Mendoza, A. (2022). Insects as an Alternative Protein Source. Annual Review of Food Science and Technology, 13(1): 19–34. https://doi.org/10.1146/annurev-food-052720-112443
  • Lucchese-Cheung, T., Aguiar, L. K. De, Da Silva, R. F. F., Pereira, M. W. (2020). Determinants of the Intention to Consume Edible Insects in Brazil. Journal of Food Products Marketing, 26(4): 297–316. https://doi.org/10.1080/ 10454446.2020.1766626
  • Mancini, S., Moruzzo, R., Riccioli, F., Paci, G. (2019). European consumers’ readiness to adopt insects as food. A review. Food Research International, 122(January): 661–678. https://doi.org/10.1016/j.foodres.2019.01.041
  • Marono, S., Loponte, R., Lombardi, P., Vassalotti, G., Pero, M. E., Russo, F., Bovera, F. (2017). Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poultry Science, 96(6): 1783–1790. https://doi.org/10.3382/ps/pew461
  • McClements, D. J. (2020). Future foods: Is it possible to design a healthier and more sustainable food supply? Nutrition Bulletin, 45(3): 341–354. https://doi.org/10.1111/nbu.12457
  • Melgar-Lalanne, G., Hernández-Álvarez, A. J., Salinas-Castro, A. (2019). Edible Insects Processing: Traditional and Innovative Technologies. Comprehensive Reviews in Food Science and Food Safety, 18: 1166–1191. https://doi.org/10.1111/1541-4337.12463
  • Morrison, O. (2019). Vegan trend boosts potential for insect protein in food products. https://www.foodnavigator.com/Article/2019/06/19/Vegan-trend-boosts-potential-for-insect-protein-in-food-products (Accessed: 14 December 2023).
  • Murefu, T. R., Macheka, L., Musundire, R., Manditsera, F. A. (2019). Safety of wild harvested and reared edible insects: A review. Food Control, 101(March): 209–224. https://doi.org/10.1016/ j.foodcont.2019.03.003
  • Newsome, R., Balestrini, C. G., Baum, M. D., Corby, J., Fisher, W., Goodburn, K., Yiannas, F. (2014). Applications and perceptions of date labeling of food. Comprehensive Reviews in Food Science and Food Safety, 13(4): 745–769. https://doi.org/10.1111/1541-4337.12086
  • Nowak, V., Persijn, D., Rittenschober, D., Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193: 39–46. https://doi.org/10.1016/ j.foodchem.2014.10.114
  • Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H., Wu, X. (2022). Potential health benefits of edible insects. Critical Reviews in Food Science and Nutrition, 62(13): 3499–3508. https://doi.org/ 10.1080/10408398.2020.1867053
  • Okyere, A. A. (2023). Food Safety Management of Insect-Based Foods. Food Safety Management (ss. 223–233). https://doi.org/10.1016/B978-0-12-820013-1.00036-X
  • Orkusz, A. (2021). Edible insects versus meat—nutritional comparison: Knowledge of their composition is the key to good health. Nutrients, 13(4). https://doi.org/10.3390/nu13041207
  • Pambo, K. O., Okello, J. J., Mbeche, R. M., Kinyuru, J. N., Alemu, M. H. (2018). The role of product information on consumer sensory evaluation, expectations, experiences and emotions of cricket-flour-containing buns. Food Research International, 106(October): 532–541. https://doi.org/10.1016/j.foodres.2018.01.011
  • Patel, S., Suleria, H. A. R., Rauf, A. (2019). Edible insects as innovative foods: Nutritional and functional assessments. Trends in Food Science and Technology, 86(July): 352–359. https://doi.org/ 10.1016/j.tifs.2019.02.033
  • Poma, G., Cuykx, M., Amato, E., Calaprice, C., Focant, J. F., Covaci, A. (2017). Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food and chemical toxicology, 100, 70-79. https://doi.org/10.1016/j.fct.2016.12.006
  • Pressman, P., Clemens, R., Hayes, W., Reddy, C. (2017). Food additive safety. Toxicology Research and Application, 1, 239784731772357. https://doi.org/10.1177/2397847317723572
  • Qu, Y., Mueller-Cajar, O., Yamori, W. (2023). Improving plant heat tolerance through modification of Rubisco activase in C3 plants to secure crop yield and food security in a future warming world. Journal of Experimental Botany, 74(2): 591–599. https://doi.org/10.1093/ jxb/erac340
  • Raheem, D., Carrascosa, C., Oluwole, O. B., Nieuwland, M., Saraiva, A., Millán, R., Raposo, A. (2019). Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Critical Reviews in Food Science and Nutrition, 59(14): 2169–2188. https://doi.org/10.1080/ 10408398.2018.1440191
  • Rezvi, H. U. A., Tahjib-Ul-Arif, M., Azim, M. A., Tumpa, T. A., Tipu, M. M. H., Najnine, F., Brestič, M. (2023). Rice and food security: Climate change implications and the future prospects for nutritional security. Food and Energy Security, 12(1): 1–17. https://doi.org/10.1002/fes3.430
  • Ritchie, H. (2023). The world population is changing: For the first time there are more people over 64 than children younger than 5. https://ourworldindata.org/population-aged-65-outnumber-children?trk=public_post_comment-text (Accessed: 13 December 2023)
  • Sanchez-Sabate, R., Sabaté, J. (2019). Consumer attitudes towards environmental concerns of meat consumption: A systematic review. International Journal of Environmental Research and Public Health, 16(7). https://doi.org/ 10.3390/ijerph16071220
  • Siddiqui, S. A., Tettey, E., Yunusa, B. M., Ngah, N., Debrah, S. K., Yang, X., Shah, M. A. (2023). Legal situation and consumer acceptance of insects being eaten as human food in different nations across the world–A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 22(6): 4786–4830. https://doi.org/ 10.1111/1541-4337.13243
  • Sobczak, P., Grochowicz, J., Łusiak, P., Żukiewicz-Sobczak, W. (2023). Development of Alternative Protein Sources in Terms of a Sustainable System. Sustainability (Switzerland), 15(16). https://doi.org/10.3390/su151612111
  • Stull, V. J. (2021). Impacts of insect consumption on human health. Journal of Insects as Food and Feed, 7(5): 695–713. https://doi.org/10.3920/ JIFF2020.0115
  • Tao, J., Li, Y. O. (2018). Edible insects as a means to address global malnutrition and food insecurity issues. Food Quality and Safety, 2(1): 17–26. https://doi.org/10.1093/fqsafe/fyy001
  • Terin, M., Bilgic, A. (2018). Türkiye ’ de Hanelerin Tavuk Eti Tüketim Harcamalar ı na Etki Eden Faktörlerin İkili Bağımlı Heckman Örneklem Seçicilik Modeli ile Analizi. 4. Uluslar Arası Beyaz Et Kongresi, 26(30): 198-206.
  • Turck, D., Bresson, J., Burlingame, B., Dean, T., Fairweather‐Tait, S., Heinonen, M., van Loveren, H. (2021). Guidance on the preparation and submission of an application for authorisation of a novel food in the context of Regulation (EU) 2015/22831 (Revision 1)2. EFSA Journal, 19(3). https://doi.org/10.2903/j.efsa.2021.6555
  • van den Heuvel, E., Newbury, A., Appleton, K. M. (2019). The psychology of nutrition with advancing age: Focus on food neophobia. Nutrients, 11(1): 6–8. https://doi.org/ 10.3390/nu11010151
  • van Huis, A., Oonincx, D. G. A. B., Rojo, S., Tomberlin, J. K. (2020). Insects as feed : house fly or black soldier fly ?. Journal of Insects as Food and Feed, 6(3): 221-229. https://doi.org/ 10.3920/JIFF2020.x003
  • van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E., de Boer, I. J. M. (2016). Global food supply: land use efficiency of livestock systems. International Journal of Life Cycle Assessment, 21(5): 747–758. https://doi.org/ 10.1007/s11367-015-0944-1
  • Vangsoe, M. T., Thogersen, R., Bertram, H. C., Heckmann, L. H. L., Hansen, M. (2018). Ingestion of insect protein isolate enhances blood amino acid concentrations similar to soy protein in a human trial. Nutrients, 10(10). https://doi.org/10.3390/nu10101357
  • Wang, J., Tao, J., Chu, M. (2020). Behind the label: Chinese consumers’ trust in food certification and the effect of perceived quality on purchase intention. Food Control, 108(April). https://doi.org/10.1016/j.foodcont.2019.106825
  • Wang, W., Wang, N., Zhou, Y., Zhang, Y., Xu, L., Xu, J., Feng, F., He, G. (2011). Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin I-converting enzyme. European Food Research and Technology, 232: 29-38. https://10.1007/s00217-010-1358-8
  • Wang, W., Wang, N., Zhang, Y. (2014). Antihypertensive properties on spontaneously hypertensive rats of peptide hydrolysates from silkworm pupae protein. Food and Nutrition Sciences, 5: 1202-1211. https://dx.doi.org/10.4236/ fns.2014.513131
  • Yang, J., Zhou, S., Kuang, H., Tang, C., Song, J. (2023). Edible insects as ingredients in food products: nutrition, functional properties, allergenicity of insect proteins, and processing modifications. Critical Reviews in Food Science and Nutrition, 0(0), 1–23. https://doi.org/10.1080/ 10408398.2023.2223644
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Kimyası ve Gıda Sensör Bilimi, Gıda Sürdürülebilirliği
Bölüm Makaleler
Yazarlar

Harun Reşit Özdal 0009-0005-5844-7221

Emine Nakilcioğlu 0000-0003-4334-2900

Yayımlanma Tarihi 15 Haziran 2024
Gönderilme Tarihi 6 Şubat 2024
Kabul Tarihi 9 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 49 Sayı: 3

Kaynak Göster

APA Özdal, H. R., & Nakilcioğlu, E. (2024). ALTERNATİF PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLER VE TÜKETİCİ KABULÜ. Gıda, 49(3), 567-579. https://doi.org/10.15237/gida.GD24023
AMA Özdal HR, Nakilcioğlu E. ALTERNATİF PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLER VE TÜKETİCİ KABULÜ. GIDA. Haziran 2024;49(3):567-579. doi:10.15237/gida.GD24023
Chicago Özdal, Harun Reşit, ve Emine Nakilcioğlu. “ALTERNATİF PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLER VE TÜKETİCİ KABULÜ”. Gıda 49, sy. 3 (Haziran 2024): 567-79. https://doi.org/10.15237/gida.GD24023.
EndNote Özdal HR, Nakilcioğlu E (01 Haziran 2024) ALTERNATİF PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLER VE TÜKETİCİ KABULÜ. Gıda 49 3 567–579.
IEEE H. R. Özdal ve E. Nakilcioğlu, “ALTERNATİF PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLER VE TÜKETİCİ KABULÜ”, GIDA, c. 49, sy. 3, ss. 567–579, 2024, doi: 10.15237/gida.GD24023.
ISNAD Özdal, Harun Reşit - Nakilcioğlu, Emine. “ALTERNATİF PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLER VE TÜKETİCİ KABULÜ”. Gıda 49/3 (Haziran 2024), 567-579. https://doi.org/10.15237/gida.GD24023.
JAMA Özdal HR, Nakilcioğlu E. ALTERNATİF PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLER VE TÜKETİCİ KABULÜ. GIDA. 2024;49:567–579.
MLA Özdal, Harun Reşit ve Emine Nakilcioğlu. “ALTERNATİF PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLER VE TÜKETİCİ KABULÜ”. Gıda, c. 49, sy. 3, 2024, ss. 567-79, doi:10.15237/gida.GD24023.
Vancouver Özdal HR, Nakilcioğlu E. ALTERNATİF PROTEİN KAYNAĞI OLARAK YENİLEBİLİR BÖCEKLER VE TÜKETİCİ KABULÜ. GIDA. 2024;49(3):567-79.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/