Research Article
BibTex RIS Cite

Impact of Chlorella vulgaris biomass substitution on in vitro bioaccessibility of cookies

Year 2024, Volume: 5 Issue: 2, 1 - 7
https://doi.org/10.55147/efse.1487284

Abstract

This study aimed to produce low-fat cookies (C) by substituting Chlorella vulgaris biomass (0.5% CB1, 1.0% CB2, and 1.5% CB3) and investigating the bioavailability of minerals, total phenolic content, and antioxidant capacities of the cookies. Chlorella sp. microalgae is recognized for its high phenolic content, antioxidant capacity, and as a source of essential minerals. Extractable and hydrolyzable fractions were prepared to determine the total phenolic content and antioxidant capacity. The total phenolic content of CB samples ranged from 200.82 to 274.07 mg GAE/g, with bioaccessibility values from 32.31 to 47.26 mg GAE/g. The CUPRAC method provided the highest antioxidant capacity values (116.57-154.38 µmol TE/g), while the ABTS method showed the highest bioaccessibility values (6.76-9.21 µmol TE/g). Mineral content analysis (Na, Mg, P, K, Ca, Mn, Fe, Cu, Zn, and Se) revealed significant enhancements in the CB samples compared to controls, showing an approximate 2-fold increase in mineral bioaccessibility. Despite extensive research on microalgae-fortified foods, there is a notable gap in knowledge regarding their "in vitro bioaccessibility." This study aims to pioneer the exploration of bioaccessibility and highlight the positive impact of algae-based food consumption on human health.

References

  • AACC. (1990). Approved Methods of the American Association of Cereal Chemists, 8th Ed., AACC, St. Paul, MN.
  • AOAC. (1990). Official methods of analysis of the Association of Official Analytical Chemists. Method: 92307. AOAC: Washington D.C
  • Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413-419. doi:10.1007/s00604-007-0777-0
  • Batista, A. P., Niccolai, A., Bursic, I., Sousa, I., Raymundo, A., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae as functional ingredients in savory food products: Application to wheat crackers. Foods, 8(12), 611. doi:10.3390/foods8120611
  • Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Biondi, N., Tredici, M. R., Sousa, I., & Raymundo, A. (2017a). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, 161-171. doi:10.1016/j.algal.2017.07.017
  • Bito, T., Okumura, E., Fujishima, M., & Watanabe, F. (2020). Potential of chlorella as a dietary supplement to promote human health. Nutrients, 12(9), 2524. doi:10.3390/nu12092524
  • Bouayed, J., Deußer, H., Hoffmann, L., & Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466-1472. doi:10.1016/j.foodchem.2011.10.030
  • Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. doi:10.1016/S0023-6438(95)80008-5
  • Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carrière, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991-1014. doi:10.1038/s41596-018-0119-1
  • Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2006). Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 261(3), 932-943. doi:10.1016/j.aquaculture.2006.08.011
  • FAO, (2003). Food Energy - Methods of analysis and conversion factors. FAO Food Nutrition, 7-17.
  • Fadila, A. N., & Widyaningrum, D. (2023). Developing cookies containing Chlorella: Proximate composition, carotenoid content, and sensory acceptance. E3S Web of Conferences, 426, 1019.
  • Ferreira, A., Guerra, I., Costa, M., Silva, J., & Gouveia, L. (2021). Chapter 15-Future perspectives of microalgae in the food industry. In T. Lafarga & G. Acién (Eds.), Cultured Microalgae for the Food Industry (pp. 387–433). Academic Press. doi:10.1016/B978-0-12-821080-2.00008-3
  • Gouveia, L., Batista, A. P., Miranda, A., Empis, J., & Raymundo, A. (2007). Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science & Emerging Technologies, 8(3), 433-436. doi:10.1016/j.ifset.2007.03.026
  • Hossain, A. K. M. M., Brennan, M. A., Mason, S. L., Guo, X., Zeng, X. A., & Brennan, C. S. (2017). The Effect of astaxanthin-rich microalgae “Haematococcus pluvialis” and whole meal flours incorporation in improving the physical and functional properties of cookies. Foods, 6(8), 57. doi:10.3390/foods6080057
  • Kadam, S. U., & Prabhasankar, P. (2010). Marine foods as functional ingredients in bakery and pasta products. Food Research International, 43(8), 1975-1980. doi:10.1016/j.foodres.2010.06.007
  • Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36. doi:10.1186/s12934-018-0879-x
  • Kulkarni, S. D., Acharya, R., Rajurkar, N. S., & Reddy, A. V. R. (2007). Evaluation of bioaccessibility of some essential elements from wheatgrass (Triticum aestivum L.) by in vitro digestion method. Food Chemistry, 103(2), 681-688. doi:10.1016/j.foodchem.2006.07.057
  • Lanfer-Marquez, U. M., Barros, R. M. C., & Sinnecker, P. (2005). Antioxidant activity of chlorophylls and their derivatives. Food Research International, 38(8), 885-891. doi:10.1016/j.foodres.2005.02.012
  • Powell, E. E., Mapiour, M. L., Evitts, R. W., & Hill, G. A. (2009). Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresource Technology, 100(1), 269-274. doi:10.1016/j.biortech.2008.05.032
  • Sahni, P., Sharma, S., & Singh, B. (2018). Evaluation and quality assessment of defatted microalgae meal of Chlorella as an alternative food ingredient in cookies. Nutrition & Food Science, 49(2), 221-231. doi:10.1108/NFS-06-2018-0171
  • Shahbazizadeh, S., Khosravi-Darani, K., & Sohrabvandi, S. (2015). Fortification of Iranian traditional cookies with Spirulina platensis. Annual Research & Review in Biology, 7(3), 144-154. doi:10.9734/ARRB/2015/13492
  • Siriwardhana, N., Lee, K. W., Kim, S.-H., Ha, J. W., & Jeon, Y. J. (2003). Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Science and Technology International, 9(5), 339-346. doi:10.1177/1082013203039014
  • Tokuşoglu, Ö., & Unal, M. K. (2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68(4), 1144-1148. doi:10.1111/j.1365-2621.2003.tb09615.x
  • Traber, M. G., & Atkinson, J. (2007). Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, 43(1), 4-15. doi:10.1016/j.freeradbiomed.2007.03.024
  • Udayan, A., Pandey, A. K., Sharma, P., Sreekumar, N., & Kumar, S. (2021). Emerging industrial applications of microalgae: Challenges and future perspectives. Systems Microbiology and Biomanufacturing, 1(4), 411-431. doi:10.1007/s43393-021-00038-8
  • Uribe-Wandurraga, Z. N., Igual, M., Garcia-Segovia, P., & Martinez-Monzo, J. (2020). In vitro bioaccessibility of minerals from microalgae-enriched cookies. Food & Function, 11(3), 2186-2194. doi:10.1039/c9fo02603g
  • Vitali, D., Dragojević, I. V., & Šebečić, B. (2009). Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chemistry, 114(4), 1462-1469. doi:10.1016/j.foodchem.2008.11.032
  • Wang, E., & Wink, M. (2016). Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ, 4, e1879. doi:10.7717/peerj.1879
Year 2024, Volume: 5 Issue: 2, 1 - 7
https://doi.org/10.55147/efse.1487284

Abstract

References

  • AACC. (1990). Approved Methods of the American Association of Cereal Chemists, 8th Ed., AACC, St. Paul, MN.
  • AOAC. (1990). Official methods of analysis of the Association of Official Analytical Chemists. Method: 92307. AOAC: Washington D.C
  • Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413-419. doi:10.1007/s00604-007-0777-0
  • Batista, A. P., Niccolai, A., Bursic, I., Sousa, I., Raymundo, A., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae as functional ingredients in savory food products: Application to wheat crackers. Foods, 8(12), 611. doi:10.3390/foods8120611
  • Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Biondi, N., Tredici, M. R., Sousa, I., & Raymundo, A. (2017a). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, 161-171. doi:10.1016/j.algal.2017.07.017
  • Bito, T., Okumura, E., Fujishima, M., & Watanabe, F. (2020). Potential of chlorella as a dietary supplement to promote human health. Nutrients, 12(9), 2524. doi:10.3390/nu12092524
  • Bouayed, J., Deußer, H., Hoffmann, L., & Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466-1472. doi:10.1016/j.foodchem.2011.10.030
  • Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. doi:10.1016/S0023-6438(95)80008-5
  • Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carrière, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991-1014. doi:10.1038/s41596-018-0119-1
  • Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2006). Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 261(3), 932-943. doi:10.1016/j.aquaculture.2006.08.011
  • FAO, (2003). Food Energy - Methods of analysis and conversion factors. FAO Food Nutrition, 7-17.
  • Fadila, A. N., & Widyaningrum, D. (2023). Developing cookies containing Chlorella: Proximate composition, carotenoid content, and sensory acceptance. E3S Web of Conferences, 426, 1019.
  • Ferreira, A., Guerra, I., Costa, M., Silva, J., & Gouveia, L. (2021). Chapter 15-Future perspectives of microalgae in the food industry. In T. Lafarga & G. Acién (Eds.), Cultured Microalgae for the Food Industry (pp. 387–433). Academic Press. doi:10.1016/B978-0-12-821080-2.00008-3
  • Gouveia, L., Batista, A. P., Miranda, A., Empis, J., & Raymundo, A. (2007). Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science & Emerging Technologies, 8(3), 433-436. doi:10.1016/j.ifset.2007.03.026
  • Hossain, A. K. M. M., Brennan, M. A., Mason, S. L., Guo, X., Zeng, X. A., & Brennan, C. S. (2017). The Effect of astaxanthin-rich microalgae “Haematococcus pluvialis” and whole meal flours incorporation in improving the physical and functional properties of cookies. Foods, 6(8), 57. doi:10.3390/foods6080057
  • Kadam, S. U., & Prabhasankar, P. (2010). Marine foods as functional ingredients in bakery and pasta products. Food Research International, 43(8), 1975-1980. doi:10.1016/j.foodres.2010.06.007
  • Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36. doi:10.1186/s12934-018-0879-x
  • Kulkarni, S. D., Acharya, R., Rajurkar, N. S., & Reddy, A. V. R. (2007). Evaluation of bioaccessibility of some essential elements from wheatgrass (Triticum aestivum L.) by in vitro digestion method. Food Chemistry, 103(2), 681-688. doi:10.1016/j.foodchem.2006.07.057
  • Lanfer-Marquez, U. M., Barros, R. M. C., & Sinnecker, P. (2005). Antioxidant activity of chlorophylls and their derivatives. Food Research International, 38(8), 885-891. doi:10.1016/j.foodres.2005.02.012
  • Powell, E. E., Mapiour, M. L., Evitts, R. W., & Hill, G. A. (2009). Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresource Technology, 100(1), 269-274. doi:10.1016/j.biortech.2008.05.032
  • Sahni, P., Sharma, S., & Singh, B. (2018). Evaluation and quality assessment of defatted microalgae meal of Chlorella as an alternative food ingredient in cookies. Nutrition & Food Science, 49(2), 221-231. doi:10.1108/NFS-06-2018-0171
  • Shahbazizadeh, S., Khosravi-Darani, K., & Sohrabvandi, S. (2015). Fortification of Iranian traditional cookies with Spirulina platensis. Annual Research & Review in Biology, 7(3), 144-154. doi:10.9734/ARRB/2015/13492
  • Siriwardhana, N., Lee, K. W., Kim, S.-H., Ha, J. W., & Jeon, Y. J. (2003). Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Science and Technology International, 9(5), 339-346. doi:10.1177/1082013203039014
  • Tokuşoglu, Ö., & Unal, M. K. (2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68(4), 1144-1148. doi:10.1111/j.1365-2621.2003.tb09615.x
  • Traber, M. G., & Atkinson, J. (2007). Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, 43(1), 4-15. doi:10.1016/j.freeradbiomed.2007.03.024
  • Udayan, A., Pandey, A. K., Sharma, P., Sreekumar, N., & Kumar, S. (2021). Emerging industrial applications of microalgae: Challenges and future perspectives. Systems Microbiology and Biomanufacturing, 1(4), 411-431. doi:10.1007/s43393-021-00038-8
  • Uribe-Wandurraga, Z. N., Igual, M., Garcia-Segovia, P., & Martinez-Monzo, J. (2020). In vitro bioaccessibility of minerals from microalgae-enriched cookies. Food & Function, 11(3), 2186-2194. doi:10.1039/c9fo02603g
  • Vitali, D., Dragojević, I. V., & Šebečić, B. (2009). Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chemistry, 114(4), 1462-1469. doi:10.1016/j.foodchem.2008.11.032
  • Wang, E., & Wink, M. (2016). Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ, 4, e1879. doi:10.7717/peerj.1879
There are 29 citations in total.

Details

Primary Language English
Subjects Food Sciences (Other)
Journal Section Research Articles
Authors

Ayşe Neslihan Dündar 0000-0003-2084-7076

Ahmet Aygün 0000-0002-6321-0350

Oya Irmak Şahin 0000-0003-2225-7993

Early Pub Date September 21, 2024
Publication Date
Submission Date May 20, 2024
Acceptance Date July 9, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Dündar, A. N., Aygün, A., & Şahin, O. I. (2024). Impact of Chlorella vulgaris biomass substitution on in vitro bioaccessibility of cookies. European Food Science and Engineering, 5(2), 1-7. https://doi.org/10.55147/efse.1487284