Review
BibTex RIS Cite

Valorisation of food by-products as a source of prebiotic

Year 2024, Volume: 2 Issue: 2, 57 - 64, 27.09.2024

Abstract

In light of the global food waste dilemma, it is important to promote a circular bio-economy model, stressing the transformational power of waste and by-products to reduce environmental impact and maximize resource use with a minimal carbon footprint. Based on the studies from the literature, this study highlights the need for global action to combat food waste, highlighting programs not only Turkey's zero-waste program but also the European Green Deal as examples of successful worldwide outreach. By increasing research about the introduction of food by-products into the food production cycle as useful prebiotic sources, the study not only emphasizes the benefit of waste reduction but also the economic and ecological relevance of such a strategy. Prebiotics are mostly composed of oligosaccharides, such as fructooligosaccharides and galactooligosaccharides, and polysaccharides, such as inulin, which are short-chain carbohydrates. These compounds may be extracted using various methods, and their impact on probiotic microorganisms is investigated. Among the methods used at this point, there are novel technologies as well as solvent extraction. In this context, it was aimed to review the literature to contribute to the debate on creating a sustainable food ecosystem.

References

  • Afrazeh, M., Tadayoni, M., Abbasi, H., & Sheikhi, A. (2021). Extraction of dietary fibers from bagasse and date seed, and evaluation of their technological properties and antioxidant and prebiotic activity. Journal of Food Measurement and Characterization, 15(2), 1949–1959. https://doi.org/10.1007/s11694-020-00774-w
  • Akgün, B., Güzelsoy, N. A., Yavuz, A., İstanbullu, Y., & Budaklier, A. (2019). Alternative Techniques For Fruit and Vegetable Waste Valorization in Turkey. Gıda ve Yem Bilimi Teknolojisi Dergisi, 22, Article 22.
  • Alexandre, E. M. C., Aguiar, N. F. B., Voss, G. B., & Pintado, M. E. (2023). Properties of Fermented Beverages from Food Wastes/By-Products. Beverages, 9(2), Article 2. https://doi.org/10.3390/beverages9020045
  • Antunes, L. L., Back, A. L., Kossar, M. L. B. C., Spessato, A. G., Colla, E., & Drunkler, D. A. (2023). Prebiotic potential of carbohydrates from defatted rice bran – Effect of physical extraction methods. Food Chemistry, 404, 134539. https://doi.org/10.1016/j.foodchem.2022.134539
  • Bilgili, M. S., Akkaya, E., Engin, G., & Demir, A. (2023). On the Way to Circular Economy: Türkiye’s Waste Management and Zero Waste Project. In S. K. Ghosh & S. K. Ghosh (Eds.), Circular Economy Adoption: Catalysing Decarbonisation Through Policy Instruments (pp. 161–195). Springer Nature. https://doi.org/10.1007/978-981-99-4803-1_6
  • Bozdağ, G., Pinar, O., Gündüz, O., & Kazan, D. (2023). Valorization of pea pod, celery root peel, and mixed-vegetable peel as a feedstock for biocellulose production from Komagataeibacter hansenii DSM 5602.
  • Biomass Conversion and Biorefinery, 13(9), 7875–7886. https://doi.org/10.1007/s13399-021-01643-2
  • Carlson, J. L., Erickson, J. M., Lloyd, B. B., & Slavin, J. L. (2018). Health Effects and Sources of Prebiotic Dietary Fiber. Current Developments in Nutrition, 2(3), nzy005. https://doi.org/10.1093/cdn/nzy005
  • Chen, G., Chen, X., Yang, B., Yu, Q., Wei, X., Ding, Y., & Kan, J. (2019). New insight into bamboo shoot (Chimonobambusa quadrangularis) polysaccharides: Impact of extraction processes on its prebiotic activity. Food Hydrocolloids, 95, 367–377. https://doi.org/10.1016/j.foodhyd.2019.04.046
  • Das, T. K., Pradhan, S., Chakrabarti, S., Mondal, K. C., & Ghosh, K. (2022). Current status of probiotic and related health benefits. Applied Food Research, 2(2), 100185. https://doi.org/10.1016/j.afres.2022.100185
  • Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8(3), Article 3. https://doi.org/10.3390/foods8030092
  • Fijan, S. (2014). Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. International Journal of Environmental Research and Public Health, 11(5), Article 5. https://doi.org/10.3390/ijerph110504745
  • Gasbarrini, G., Bonvicini, F., & Gramenzi, A. (2016). Probiotics History. Journal of Clinical Gastroenterology, 50, S116. https://doi.org/10.1097/MCG.0000000000000697
  • Guo, Z., Zhao, B., Li, H., Miao, S., & Zheng, B. (2019). Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.). Innovative Food Science & Emerging Technologies, 54, 51–63. https://doi.org/10.1016/j.ifset.2019.03.009
  • Hamzaoğlu, N. M., & Göktuna, B. Ö. (2022). Food Waste Behavior of Organic Food Consumers in Turkey. Journal of Management and Economics Research, 20(4), Article 4. https://doi.org/10.11611/yead.1195595
  • Han, J., Byun, J., Kwon, O., & Lee, J. (2022). Climate variability and food waste treatment: Analysis for bioenergy sustainability. Renewable and Sustainable Energy Reviews, 160, 112336. https://doi.org/10.1016/j.rser.2022.112336
  • Hurtado-Romero, A., Del Toro-Barbosa, M., Garcia-Amezquita, L. E., & García-Cayuela, T. (2020). Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends in Food Science & Technology, 104, 117–131. https://doi.org/10.1016/j.tifs.2020.08.007
  • Kaur, P., & Mankoo, R. K. (2021). Optimization of xylan extraction process from rice straw for production of autohydrolysates rich in prebiotic xylooligosaccharides. Cellulose Chemistry and Technology, 55, 1001–1017. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.86
  • Ke, Y., Lin, L., & Zhao, M. (2023). Lotus leaf polysaccharides prepared by alkaline water, deep eutectic solvent and high pressure homogenization-assisted dual enzyme extraction: A comparative study of structural features, prebiotic activities and functionalities. Food Hydrocolloids, 143, 108870. https://doi.org/10.1016/j.foodhyd.2023.108870
  • Kelly, G. (2008). Inulin-type prebiotics--a review: Part 1. Alternative Medicine Review: A Journal of Clinical Therapeutic, 13(4), 315–329.
  • Li, W., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., Gu, G., & Guo, Z. (2015). Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydrate Polymers, 121, 315–319. https://doi.org/10.1016/j.carbpol.2014.12.055
  • Manning, T. S., & Gibson, G. R. (2004). Prebiotics. Best Practice & Research Clinical Gastroenterology, 18(2), 287–298. https://doi.org/10.1016/j.bpg.2003.10.008
  • Phirom-on, K., & Apiraksakorn, J. (2021). Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis. Food Bioscience, 41, 101083. https://doi.org/10.1016/j.fbio.2021.101083
  • Rahul, R., Jha, U., Sen, G., & Mishra, S. (2014). Carboxymethyl inulin: A novel flocculant for wastewater treatment. International Journal of Biological Macromolecules, 63, 1–7. https://doi.org/10.1016/j.ijbiomac.2013.10.015
  • Sawangwan, T., Wansanit, W., Pattani, L., & Noysang, C. (2018). Study of prebiotic properties from edible mushroom extraction. Agriculture and Natural Resources, 52(6), 519–524. https://doi.org/10.1016/j.anres.2018.11.020
  • Soylu, A. C. (2022). Sürdürülebilir Kalkınma ve Gıda Güvenliği İlişkisi. Paradigma: İktisadi ve İdari Araştırmalar Dergisi, 11(2), Article 2.
  • The European Green Deal—European Commission. (2021, July 14). https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
  • Valcheva, R., & Dieleman, L. A. (2016). Prebiotics: Definition and protective mechanisms. Best Practice & Research Clinical Gastroenterology, 30(1), 27–37. https://doi.org/10.1016/j.bpg.2016.02.008
  • Villena, J., & Kitazawa, H. (2017). Probiotic Microorganisms: A Closer Look. Microorganisms, 5(2), Article 2. https://doi.org/10.3390/microorganisms5020017
  • Wichienchot, S., Jatupornpipat, M., & Rastall, R. A. (2010). Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, 120(3), 850–857. https://doi.org/10.1016/j.foodchem.2009.11.026
  • Williams, N. T. (2010). Probiotics. American Journal of Health-System Pharmacy, 67(6), 449–458. https://doi.org/10.2146/ajhp090168
  • Yang, L., Zhang, H., Zhao, Y., Huang, J., Zhao, L., Lin, Q., Han, L., Liu, J., Wang, J., & Liu, H. (2019). Chemical Compositions and Prebiotic Activity of Soy Hull Polysaccharides in Vitro. Food Science and Technology Research, 25(6), 843–851. https://doi.org/10.3136/fstr.25.843
  • Yıldıran, H., Kılıç, G. B., & Karahan, A. G. (2017). Probiyotik Mayalar ve Özellikleri. Turkish Journal of Agriculture - Food Science and Technology, 5(10), Article 10. https://doi.org/10.24925/turjaf.v5i10.1148-1155.1239
  • You, S., Ma, Y., Yan, B., Pei, W., Wu, Q., Ding, C., & Huang, C. (2022). The promotion mechanism of prebiotics for probiotics: A review. Frontiers in Nutrition, 9. https://www.frontiersin.org/articles/10.3389/fnut.2022.1000517
  • Zou, X., Xiao, J., Chi, J., Zhang, M., Zhang, R., Jia, X., Mei, D., Dong, L., Yi, Y., & Huang, F. (2022). Physicochemical properties and prebiotic activities of polysaccharides from Zizyphus jujube based on different extraction techniques. International Journal of Biological Macromolecules, 223, 663–672. https://doi.org/10.1016/j.ijbiomac.2022.11.057

Gıda yan ürünlerinin prebiyotik kaynağı olarak değerlendirilmesi

Year 2024, Volume: 2 Issue: 2, 57 - 64, 27.09.2024

Abstract

Küresel gıda atığı problemini dikkate alarak, çevresel etkiyi azaltmak ve minimum karbon ayak iziyle kaynak kullanımını en üst düzeye çıkarmak için atıkların ve yan ürünlerin tekrar kullanımıyla döngüsel biyoekonomi modelini desteklemek önemlidir. Bu nedenle, mevcut çalışmada, gıda israfıyla mücadele için yapılması gerekenleri içeren kaynaklar özetlenerek hem Türkiye’deki sıfır atık programı hem de Avrupa Yeşil Anlaşması vurgulanmaktadır. Aynı zamanda mevcut çalışmada, gıda yan ürünlerinin prebiyotik kaynağı olarak geri kazanılması ile ilgili çalışmalar ile hem ekonomik hem de ekolojik etkisine değinilmektedir. Prebiyotikler çoğunlukla fruktooligosakkaritler ve galaktooligosakkaritler gibi oligosakkaritler ve kısa zincirli karbonhidratlar olan inülin gibi polisakkaritlerden oluşmaktadır. Bu bileşikler, çeşitli yöntemlerle ekstrakte edilebilmekte ve probiyotik mikroorganizmalar üzerindeki etkileri araştırılmaktadır. Bu noktada kullanılan yöntemler arasında çözgen ekstraksiyonunun yanı sıra yeni teknolojiler de bulunmaktadır. Bu kapsamda, sürdürülebilir bir gıda ekosistemi yaratma konusundaki tartışmalara katkıda bulunmak üzere literatürde yer alan kaynakların incelenmesi hedeflenmiştir.

References

  • Afrazeh, M., Tadayoni, M., Abbasi, H., & Sheikhi, A. (2021). Extraction of dietary fibers from bagasse and date seed, and evaluation of their technological properties and antioxidant and prebiotic activity. Journal of Food Measurement and Characterization, 15(2), 1949–1959. https://doi.org/10.1007/s11694-020-00774-w
  • Akgün, B., Güzelsoy, N. A., Yavuz, A., İstanbullu, Y., & Budaklier, A. (2019). Alternative Techniques For Fruit and Vegetable Waste Valorization in Turkey. Gıda ve Yem Bilimi Teknolojisi Dergisi, 22, Article 22.
  • Alexandre, E. M. C., Aguiar, N. F. B., Voss, G. B., & Pintado, M. E. (2023). Properties of Fermented Beverages from Food Wastes/By-Products. Beverages, 9(2), Article 2. https://doi.org/10.3390/beverages9020045
  • Antunes, L. L., Back, A. L., Kossar, M. L. B. C., Spessato, A. G., Colla, E., & Drunkler, D. A. (2023). Prebiotic potential of carbohydrates from defatted rice bran – Effect of physical extraction methods. Food Chemistry, 404, 134539. https://doi.org/10.1016/j.foodchem.2022.134539
  • Bilgili, M. S., Akkaya, E., Engin, G., & Demir, A. (2023). On the Way to Circular Economy: Türkiye’s Waste Management and Zero Waste Project. In S. K. Ghosh & S. K. Ghosh (Eds.), Circular Economy Adoption: Catalysing Decarbonisation Through Policy Instruments (pp. 161–195). Springer Nature. https://doi.org/10.1007/978-981-99-4803-1_6
  • Bozdağ, G., Pinar, O., Gündüz, O., & Kazan, D. (2023). Valorization of pea pod, celery root peel, and mixed-vegetable peel as a feedstock for biocellulose production from Komagataeibacter hansenii DSM 5602.
  • Biomass Conversion and Biorefinery, 13(9), 7875–7886. https://doi.org/10.1007/s13399-021-01643-2
  • Carlson, J. L., Erickson, J. M., Lloyd, B. B., & Slavin, J. L. (2018). Health Effects and Sources of Prebiotic Dietary Fiber. Current Developments in Nutrition, 2(3), nzy005. https://doi.org/10.1093/cdn/nzy005
  • Chen, G., Chen, X., Yang, B., Yu, Q., Wei, X., Ding, Y., & Kan, J. (2019). New insight into bamboo shoot (Chimonobambusa quadrangularis) polysaccharides: Impact of extraction processes on its prebiotic activity. Food Hydrocolloids, 95, 367–377. https://doi.org/10.1016/j.foodhyd.2019.04.046
  • Das, T. K., Pradhan, S., Chakrabarti, S., Mondal, K. C., & Ghosh, K. (2022). Current status of probiotic and related health benefits. Applied Food Research, 2(2), 100185. https://doi.org/10.1016/j.afres.2022.100185
  • Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8(3), Article 3. https://doi.org/10.3390/foods8030092
  • Fijan, S. (2014). Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. International Journal of Environmental Research and Public Health, 11(5), Article 5. https://doi.org/10.3390/ijerph110504745
  • Gasbarrini, G., Bonvicini, F., & Gramenzi, A. (2016). Probiotics History. Journal of Clinical Gastroenterology, 50, S116. https://doi.org/10.1097/MCG.0000000000000697
  • Guo, Z., Zhao, B., Li, H., Miao, S., & Zheng, B. (2019). Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.). Innovative Food Science & Emerging Technologies, 54, 51–63. https://doi.org/10.1016/j.ifset.2019.03.009
  • Hamzaoğlu, N. M., & Göktuna, B. Ö. (2022). Food Waste Behavior of Organic Food Consumers in Turkey. Journal of Management and Economics Research, 20(4), Article 4. https://doi.org/10.11611/yead.1195595
  • Han, J., Byun, J., Kwon, O., & Lee, J. (2022). Climate variability and food waste treatment: Analysis for bioenergy sustainability. Renewable and Sustainable Energy Reviews, 160, 112336. https://doi.org/10.1016/j.rser.2022.112336
  • Hurtado-Romero, A., Del Toro-Barbosa, M., Garcia-Amezquita, L. E., & García-Cayuela, T. (2020). Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends in Food Science & Technology, 104, 117–131. https://doi.org/10.1016/j.tifs.2020.08.007
  • Kaur, P., & Mankoo, R. K. (2021). Optimization of xylan extraction process from rice straw for production of autohydrolysates rich in prebiotic xylooligosaccharides. Cellulose Chemistry and Technology, 55, 1001–1017. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.86
  • Ke, Y., Lin, L., & Zhao, M. (2023). Lotus leaf polysaccharides prepared by alkaline water, deep eutectic solvent and high pressure homogenization-assisted dual enzyme extraction: A comparative study of structural features, prebiotic activities and functionalities. Food Hydrocolloids, 143, 108870. https://doi.org/10.1016/j.foodhyd.2023.108870
  • Kelly, G. (2008). Inulin-type prebiotics--a review: Part 1. Alternative Medicine Review: A Journal of Clinical Therapeutic, 13(4), 315–329.
  • Li, W., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., Gu, G., & Guo, Z. (2015). Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydrate Polymers, 121, 315–319. https://doi.org/10.1016/j.carbpol.2014.12.055
  • Manning, T. S., & Gibson, G. R. (2004). Prebiotics. Best Practice & Research Clinical Gastroenterology, 18(2), 287–298. https://doi.org/10.1016/j.bpg.2003.10.008
  • Phirom-on, K., & Apiraksakorn, J. (2021). Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis. Food Bioscience, 41, 101083. https://doi.org/10.1016/j.fbio.2021.101083
  • Rahul, R., Jha, U., Sen, G., & Mishra, S. (2014). Carboxymethyl inulin: A novel flocculant for wastewater treatment. International Journal of Biological Macromolecules, 63, 1–7. https://doi.org/10.1016/j.ijbiomac.2013.10.015
  • Sawangwan, T., Wansanit, W., Pattani, L., & Noysang, C. (2018). Study of prebiotic properties from edible mushroom extraction. Agriculture and Natural Resources, 52(6), 519–524. https://doi.org/10.1016/j.anres.2018.11.020
  • Soylu, A. C. (2022). Sürdürülebilir Kalkınma ve Gıda Güvenliği İlişkisi. Paradigma: İktisadi ve İdari Araştırmalar Dergisi, 11(2), Article 2.
  • The European Green Deal—European Commission. (2021, July 14). https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
  • Valcheva, R., & Dieleman, L. A. (2016). Prebiotics: Definition and protective mechanisms. Best Practice & Research Clinical Gastroenterology, 30(1), 27–37. https://doi.org/10.1016/j.bpg.2016.02.008
  • Villena, J., & Kitazawa, H. (2017). Probiotic Microorganisms: A Closer Look. Microorganisms, 5(2), Article 2. https://doi.org/10.3390/microorganisms5020017
  • Wichienchot, S., Jatupornpipat, M., & Rastall, R. A. (2010). Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, 120(3), 850–857. https://doi.org/10.1016/j.foodchem.2009.11.026
  • Williams, N. T. (2010). Probiotics. American Journal of Health-System Pharmacy, 67(6), 449–458. https://doi.org/10.2146/ajhp090168
  • Yang, L., Zhang, H., Zhao, Y., Huang, J., Zhao, L., Lin, Q., Han, L., Liu, J., Wang, J., & Liu, H. (2019). Chemical Compositions and Prebiotic Activity of Soy Hull Polysaccharides in Vitro. Food Science and Technology Research, 25(6), 843–851. https://doi.org/10.3136/fstr.25.843
  • Yıldıran, H., Kılıç, G. B., & Karahan, A. G. (2017). Probiyotik Mayalar ve Özellikleri. Turkish Journal of Agriculture - Food Science and Technology, 5(10), Article 10. https://doi.org/10.24925/turjaf.v5i10.1148-1155.1239
  • You, S., Ma, Y., Yan, B., Pei, W., Wu, Q., Ding, C., & Huang, C. (2022). The promotion mechanism of prebiotics for probiotics: A review. Frontiers in Nutrition, 9. https://www.frontiersin.org/articles/10.3389/fnut.2022.1000517
  • Zou, X., Xiao, J., Chi, J., Zhang, M., Zhang, R., Jia, X., Mei, D., Dong, L., Yi, Y., & Huang, F. (2022). Physicochemical properties and prebiotic activities of polysaccharides from Zizyphus jujube based on different extraction techniques. International Journal of Biological Macromolecules, 223, 663–672. https://doi.org/10.1016/j.ijbiomac.2022.11.057
There are 35 citations in total.

Details

Primary Language English
Subjects Food Microbiology
Journal Section Reviews
Authors

İrem Erdal 0009-0003-5617-8190

Simay Türkay 0009-0008-6612-7422

Dilara Devecioğlu 0000-0001-6681-0944

Funda Karbancıoğlu Güler 0000-0001-6576-0084

Publication Date September 27, 2024
Submission Date February 7, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

APA Erdal, İ., Türkay, S., Devecioğlu, D., Karbancıoğlu Güler, F. (2024). Valorisation of food by-products as a source of prebiotic. ITU Journal of Food Science and Technology, 2(2), 57-64.