Araştırma Makalesi
BibTex RIS Kaynak Göster

Şarapçılık Atığı ile Yapısı Güçlendirilmiş Balık Jelatininin Reolojik Özellikleri Üzerine pH ve Gamma Işınlamanın Kombine Etkisi

Yıl 2023, Cilt: 20 Sayı: 4, 918 - 932, 25.12.2023
https://doi.org/10.33462/jotaf.1232103

Öz

Balık jelatinindeki zayıf jel kuvvetini yükseltmek ve kullanım alanlarını genişletmek için bir takım modifikasyon çalışmaları yapılmaktadır. Bu çalışmada balık jelatininin reolojik özellikleri üzerine çapraz bağ oluşturmak amacıyla %20 şarap tortusu (WL) ilave edilerek farklı pH değerlerinde (3, 5 ve 7) yüksek doz gamma ışınlamanın(10, 20 ve 30 kGy), etkisi incelenmiştir . WL ilavesi ile jelatinde en yüksek jel kuvveti 2380.68±34.45 Pa olarak tespit edilmiştir. WL ilavesi örneklerin jel mukavemetini %52 oranında arttırmıştır. 10, 20 ve 30 kGy ışınlama dozuna göre solüsyonların jel kuvvetleri sırasıyla 1351.74, 646.80 ve 599.87 Pa olarak tespit edilmiştir. Uygulanan ışınlama dozları içerisinde jelleşme kinetiği yönünden en iyi sonuç 10 kGy ile elde edilmiştir. WL ilavesiz kontrol grubunun jelleşme oranı kgel değeri 286.03 Pa, WL ilaveli kontrol grubunun kgel değeri ise 332.64 Pa olarak tespit edilmiştir. Işınlama grupları arasında en yüksek kgel değeri 10 kGy ışınlanan örnekte 184.43 Pa olarak belirlenmiştir. Tüm jelatin solüsyonlarının Power-law modeli ile uyumlu olduğu ve elastik özelliklerinin viskoz özelliklerden daha baskın olduğu tespit edilmiştir. Kıvam indeksi Kʹ değeri 2373. 25 Pa.s olarak en yüksek ışınlanmamış WL ilaveli örnekte bulunmuştur. 10, 20 ve 30 kGy gamma ışınlama jelatinin erime derecesini önemli düzeyde arttırmış ve erime dereceleri sırasıyla 45.36, 43.61 ve 35.41 °C olarak belirlenmiştir. pH değerleri jelatinin jel kuvveti, jelleşme ve erime derecelerini önemli düzeyde etkilemiştir. pH3’de jelatin solüsyonlarının daha düşük jel kuvveti ve erime derecesi değerlerine sahip olduğu pH7’nin yapıyı değiştirmediği pH5’in ise tüm reolojik özellikleri arttırdığı tespit edilmiştir. pH5 ile kgel değerinde %30 oranında bir artış ve erime derecesinde de kontrol örneğe göre 2 kat artış tespit edilmiş olup en yüksek erime derecesi 48.72 oC’ye ulaşılmıştır.

Kaynakça

  • Ahmed, J. (2017). Advances in food rheology and its applications.Woodhead Publishing. Sawston, Cambridge.
  • Anonim (2020). Gelatin Market Size, Analysis | Industry Trends Report, https://www.grandviewresearch.com/industry-analysis/gelatin-market-analysis, (Erişim tarihi: 18.10.2021).
  • Anvari, M. and Chung, D. (2016). Dynamic rheological and structural characterization of fish gelatin–Gum arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids, 60:516-524.
  • Anvari, M. and Joyner, H. S. (2017). Effect of fish gelatin-gum arabic interactions on structural and functional properties of concentrated emulsions. Food Research International, 102:1-7.
  • Bae, H. J., Park, H. J., Hong, S. I., Byun, Y. J., Darby, D. O., Kimmel, R. M. and Whiteside, W. S. (2009). Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. LWT-Food Science and Technology, 42(6): 1179-1186.
  • Balange, A. K. and Benjakul, S. (2010). Cross-linking activity of oxidised tannic acid towards mackerel muscle proteins as affected by protein types and setting temperatures. Food Chemistry, 120(1): 268-277.
  • Benbettaïeb, N., Karbowiak, T., Brachais, C.-H. and Debeaufort, F. (2016). Impact of electron beam irradiation on fish gelatin film properties. Food Chemistry, 195:11-18.
  • Bessalah, S., Jebahi, S., Faraz, A., Raoufi, A., Tırınk, C., Dridi, W. and Farah, K. (2022). Effect of gamma radiation on novel gelatin extracted from camel skin for pharmaceutical application. Pakistan Journal of Zoology, 55(2): 1-12.
  • Bilgin, O., Sarıer, S. Y., Başer, İ. and Balkan, A. (2022). Enhancement of androgenesis and plant regeneration from wheat anther culture by seed pre-sowing gamma ırradiation. Journal of Tekirdağ Agricultural Faculty, 19(2): 354-365.
  • Bostar, M. and Hosseini, E. (2021). Improving the functional properties of fish gelatin by conjugation with the water-soluble fraction of bitter almond gum. Food Science and Biotechnology, 30(1): 55-63.
  • Brostrom, G. G. and Brostrom, J. (2008). The Business of Wine: An Encyclopedia. Greenwood Publishing Group, Connecticut, USA.
  • Cai, L., Feng, J., Peng, X., Regenstein, J. M., Li, X., Li, J. and Zhao, W. (2016). Effect of egg albumen protein addition on physicochemical properties and nanostructure of gelatin from fish skin. Journal of food science and technology, 53(12): 4224-4233.
  • Choi, S. S. and Regenstein, J. (2000). Physicochemical and sensory characteristics of fish gelatin. Journal of Food Science, 65(2):194-199.
  • Duconseille, A., Astruc, T., Quintana, N., Meersman, F. and Sante-Lhoutellier, V. (2015). Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids, 43: 360-376.
  • Garcia, M. M. and del Carmen Guillen, M. (2003). Method for the production of gelatin of marine origin and product thus obtained: Google Patents.
  • Gilsenan, P. and Ross-Murphy, S. (2000). Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids, 14(3): 191-195.
  • Gómez-Guillén, M., Giménez, B. and Montero, P. (2005). Extraction of gelatin from fish skins by high pressure treatment. Food Hydrocolloids, 19(5), 923-928.
  • Gómez-Guillén, M., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B. and Montero, P. (2009). Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 20(1): 3-16.
  • Huang, T., Tu, Z.-c., Shangguan, X., Sha, X., Wang, H., Zhang, L. and Bansal, N. (2019). Fish gelatin modifications: A comprehensive review. Trends in Food Science & Technology, 86: 260-269.
  • Huang, T., Tu, Z.-C., Wang, H., Liu, W., Zhang, L., Zhang, Y. and ShangGuan, X.-C. (2017a). Comparison of rheological behaviors and nanostructure of bighead carp scales gelatin modified by different modification methods. Journal of food science and technology, 54(5):1256-1265.
  • Huang, T., Tu, Z.-c., Wang, H., Shangguan, X., Zhang, L., Zhang, N.-h. and Bansal, N. (2017b). Pectin and enzyme complex modified fish scales gelatin: Rheological behavior, gel properties and nanostructure. Carbohydrate Polymers, 156:294-302.
  • Işık, N. O. (2018). Manda derisi budama atıklarından farklı yöntemlerle jelatin üretilmesi ve manda jelatininin reolojik özelliklerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 15(3), 44-51.
  • Karabulut, G. ve Yemiş, O. (2019). Fenolik bileşiklerin bağlı formları ve biyoyararlılığı. Akademik Gıda, 17(4):526-537.
  • Karim, A. and Bhat, R. (2009). Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, 23(3): 563-576.
  • Kaynarca, G. B., Gümüş, T. and Kamer, D. D. A. (2022). Rheological properties of fish (Sparus aurata) skin gelatin modified by agricultural wastes extracts. Food Chemistry, 393:133348.
  • Kołodziejska, I. and Piotrowska, B. (2007). The water vapour permeability, mechanical properties and solubility of fish gelatin–chitosan films modified with transglutaminase or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and plasticized with glycerol. Food Chemistry, 103(2): 295-300.
  • Kuan, Y.-H., Nafchi, A. M., Huda, N., Ariffin, F. and Karim, A. A. (2016). Effects of sugars on the gelation kinetics and texture of duck feet gelatin. Food Hydrocolloids, 58: 267-275.
  • Lin, L., Regenstein, J. M., Lv, S., Lu, J. and Jiang, S. (2017). An overview of gelatin derived from aquatic animals: Properties and modification. Trends in Food Science & Technology, 68:102-112.
  • Mariod, A. A. and Fadul, H. (2013). Gelatin, source, extraction and industrial applications. Acta Scientiarum Polonorum Technologia Alimentaria, 12(2):135-147.
  • Nieto-Suárez, M., López-Quintela, M. A. and Lazzari, M. (2016). Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydrate polymers, 141:175-183.
  • Norziah, M., Al-Hassan, A., Khairulnizam, A., Mordi, M. and Norita, M. (2009). Characterization of fish gelatin from surimi processing wastes: Thermal analysis and effect of transglutaminase on gel properties. Food Hydrocolloids, 23(6): 1610-1616.
  • Osorio, F. A., Bilbao, E., Bustos, R. and Alvarez, F. (2007). Effects of concentration, bloom degree, and pH on gelatin melting and gelling temperatures using small amplitude oscillatory rheology. International Journal of Food Properties, 10(4):841-851.
  • Otoni, C. G., Avena‐Bustillos, R. J., Chiou, B. S., Bilbao‐Sainz, C., Bechtel, P. J. and McHugh, T. H. (2012). Ultraviolet‐B radiation induced cross‐linking improves physical properties of cold‐and warm‐water fish gelatin gels and films. Journal of food science, 77(9): E215-E223.
  • Poungchawanwong, S., Klaypradit, W., Li, Q., Wang, J. and Hou, H. (2020). Interaction effect of phenolic compounds on Alaska Pollock skin gelatin and associated changes. LWT, 133: 110018.
  • Pranoto, Y., Lee, C. M. and Park, H. J. (2007). Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT-Food Science and Technology, 40(5):766-774.
  • Schreiber, R. and Gareis, H. (2007). Gelatine Handbook: Theory and Industrial Practice 1st Edition. Wiley-VCH, Weinheim, Germany.
  • Sha, X.-M., Tu, Z.-C., Wang, H., Huang, T., Duan, D.-L., He, N., . . .and Xiao, H. (2014). Gelatin quantification by oxygen-18 labeling and liquid chromatography–high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 62(49): 11840-11853.
  • Songchotikunpan, P., Tattiyakul, J. and Supaphol, P. (2008). Extraction and electrospinning of gelatin from fish skin. International Journal of Biological Macromolecules, 42(3).247-255.
  • Sow, L. C. and Yang, H. (2015). Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocolloids, 45: 72-82.
  • Strauss, G. and Gibson, S. M. (2004). Plant phenolics as cross-linkers of gelatin gels and gelatin-based coacervates for use as food ingredients. Food Hydrocolloids, 18(1): 81-89.
  • Van Nieuwenhove, I., Salamon, A., Peters, K., Graulus, G.-J., Martins, J. C., Frankel, D., . . .and Dubruel, P. (2016). Gelatin-and starch-based hydrogels. Part A: Hydrogel development, characterization and coating. Carbohydrate Polymers, 152: 129-139.
  • Voigt, M. N. and Botta, J. R. (1990). Advances in Fisheries Technology and Biotechnology for Increased Profitability: Papers from the 34th Atlantic Fisheries Technological Conference. Technomic Publishing Co, LANCASTER, USA.
  • Wang, Y., Hao, R., Mráz, J., Pu, Y., Li, S., Dong, X. and Pan, J. (2022). Gelling and emulsifying properties of tiger puffer (Takifugu rubripes) skin gelatin as manipulated by pH. Journal of Molecular Liquids, 369: 120886.
  • Woods, R. J. and Pikaev, A. K. (1993). Applied radiation chemistry: radiation processing. John Wiley & Sons Inc, New Jersey, USA.

The Combined Effect of pH and Gamma Irradiation on the Rheological Properties of Winery Waste-enhanced Fish Gelatin

Yıl 2023, Cilt: 20 Sayı: 4, 918 - 932, 25.12.2023
https://doi.org/10.33462/jotaf.1232103

Öz

The effects of high-dose gamma irradiation, different pH values, and the addition of wine residue (WL) on the rheological properties of fish gelatin were investigated. The gelation kinetics, gel strength, gelation, and melting temperatures of gelatin with 20% WL addition were studied by subjecting it to gamma irradiation at 10, 20, and 30 kGy doses and pH 3, 5, and 7. With the addition of WL, the highest gel strength was determined as 2380.68±34.45 Pa in gelatin. The samples' gel strength increased by 52% with the addition of WL. The solutions' gel strengths were determined to be 1351.74, 646.80, and 599.87 Pa for 10, 20, and 30 kGy irradiation dosages, respectively. As for gelation kinetics, 10 kGy was the most effective irradiation level. The control group without WL had a gelation rate kgel value of 286.03 Pa, and the control group with WL had a kgel value of 332.64 Pa. The irradiation group with the greatest kgel value was found to be the 10kGy group, with a value of 184.43 Pa. It was determined that all gelatin solutions were compatible with the Power-law model and elastic properties were more dominant than viscous properties. The consistency index Kʹ value was found to be 2373. 25 Pa.s in the highest non-irradiated WL added sample. Gelatin's melting point was dramatically raised by gamma irradiation at 10, 20, and 30 kGy; the resulting melting points were 45.36 °C, 43.61 °C, and 35.41 °C, respectively. The degrees of melting, gelation, and gel strength of the gelatin were all considerably impacted by the pH levels. The gel strength and melting point values were found to be decreased in pH:3 gelatin solutions, but at pH:7 the structure was unaffected and at pH:5 all rheological properties were enhanced. In comparison to the control sample, pH:5 produced a 30% rise in kgel value and a 2-fold increase in melting point. The highest melting point was reached at 48.72 oC.

Kaynakça

  • Ahmed, J. (2017). Advances in food rheology and its applications.Woodhead Publishing. Sawston, Cambridge.
  • Anonim (2020). Gelatin Market Size, Analysis | Industry Trends Report, https://www.grandviewresearch.com/industry-analysis/gelatin-market-analysis, (Erişim tarihi: 18.10.2021).
  • Anvari, M. and Chung, D. (2016). Dynamic rheological and structural characterization of fish gelatin–Gum arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids, 60:516-524.
  • Anvari, M. and Joyner, H. S. (2017). Effect of fish gelatin-gum arabic interactions on structural and functional properties of concentrated emulsions. Food Research International, 102:1-7.
  • Bae, H. J., Park, H. J., Hong, S. I., Byun, Y. J., Darby, D. O., Kimmel, R. M. and Whiteside, W. S. (2009). Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. LWT-Food Science and Technology, 42(6): 1179-1186.
  • Balange, A. K. and Benjakul, S. (2010). Cross-linking activity of oxidised tannic acid towards mackerel muscle proteins as affected by protein types and setting temperatures. Food Chemistry, 120(1): 268-277.
  • Benbettaïeb, N., Karbowiak, T., Brachais, C.-H. and Debeaufort, F. (2016). Impact of electron beam irradiation on fish gelatin film properties. Food Chemistry, 195:11-18.
  • Bessalah, S., Jebahi, S., Faraz, A., Raoufi, A., Tırınk, C., Dridi, W. and Farah, K. (2022). Effect of gamma radiation on novel gelatin extracted from camel skin for pharmaceutical application. Pakistan Journal of Zoology, 55(2): 1-12.
  • Bilgin, O., Sarıer, S. Y., Başer, İ. and Balkan, A. (2022). Enhancement of androgenesis and plant regeneration from wheat anther culture by seed pre-sowing gamma ırradiation. Journal of Tekirdağ Agricultural Faculty, 19(2): 354-365.
  • Bostar, M. and Hosseini, E. (2021). Improving the functional properties of fish gelatin by conjugation with the water-soluble fraction of bitter almond gum. Food Science and Biotechnology, 30(1): 55-63.
  • Brostrom, G. G. and Brostrom, J. (2008). The Business of Wine: An Encyclopedia. Greenwood Publishing Group, Connecticut, USA.
  • Cai, L., Feng, J., Peng, X., Regenstein, J. M., Li, X., Li, J. and Zhao, W. (2016). Effect of egg albumen protein addition on physicochemical properties and nanostructure of gelatin from fish skin. Journal of food science and technology, 53(12): 4224-4233.
  • Choi, S. S. and Regenstein, J. (2000). Physicochemical and sensory characteristics of fish gelatin. Journal of Food Science, 65(2):194-199.
  • Duconseille, A., Astruc, T., Quintana, N., Meersman, F. and Sante-Lhoutellier, V. (2015). Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids, 43: 360-376.
  • Garcia, M. M. and del Carmen Guillen, M. (2003). Method for the production of gelatin of marine origin and product thus obtained: Google Patents.
  • Gilsenan, P. and Ross-Murphy, S. (2000). Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids, 14(3): 191-195.
  • Gómez-Guillén, M., Giménez, B. and Montero, P. (2005). Extraction of gelatin from fish skins by high pressure treatment. Food Hydrocolloids, 19(5), 923-928.
  • Gómez-Guillén, M., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B. and Montero, P. (2009). Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 20(1): 3-16.
  • Huang, T., Tu, Z.-c., Shangguan, X., Sha, X., Wang, H., Zhang, L. and Bansal, N. (2019). Fish gelatin modifications: A comprehensive review. Trends in Food Science & Technology, 86: 260-269.
  • Huang, T., Tu, Z.-C., Wang, H., Liu, W., Zhang, L., Zhang, Y. and ShangGuan, X.-C. (2017a). Comparison of rheological behaviors and nanostructure of bighead carp scales gelatin modified by different modification methods. Journal of food science and technology, 54(5):1256-1265.
  • Huang, T., Tu, Z.-c., Wang, H., Shangguan, X., Zhang, L., Zhang, N.-h. and Bansal, N. (2017b). Pectin and enzyme complex modified fish scales gelatin: Rheological behavior, gel properties and nanostructure. Carbohydrate Polymers, 156:294-302.
  • Işık, N. O. (2018). Manda derisi budama atıklarından farklı yöntemlerle jelatin üretilmesi ve manda jelatininin reolojik özelliklerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 15(3), 44-51.
  • Karabulut, G. ve Yemiş, O. (2019). Fenolik bileşiklerin bağlı formları ve biyoyararlılığı. Akademik Gıda, 17(4):526-537.
  • Karim, A. and Bhat, R. (2009). Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, 23(3): 563-576.
  • Kaynarca, G. B., Gümüş, T. and Kamer, D. D. A. (2022). Rheological properties of fish (Sparus aurata) skin gelatin modified by agricultural wastes extracts. Food Chemistry, 393:133348.
  • Kołodziejska, I. and Piotrowska, B. (2007). The water vapour permeability, mechanical properties and solubility of fish gelatin–chitosan films modified with transglutaminase or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and plasticized with glycerol. Food Chemistry, 103(2): 295-300.
  • Kuan, Y.-H., Nafchi, A. M., Huda, N., Ariffin, F. and Karim, A. A. (2016). Effects of sugars on the gelation kinetics and texture of duck feet gelatin. Food Hydrocolloids, 58: 267-275.
  • Lin, L., Regenstein, J. M., Lv, S., Lu, J. and Jiang, S. (2017). An overview of gelatin derived from aquatic animals: Properties and modification. Trends in Food Science & Technology, 68:102-112.
  • Mariod, A. A. and Fadul, H. (2013). Gelatin, source, extraction and industrial applications. Acta Scientiarum Polonorum Technologia Alimentaria, 12(2):135-147.
  • Nieto-Suárez, M., López-Quintela, M. A. and Lazzari, M. (2016). Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydrate polymers, 141:175-183.
  • Norziah, M., Al-Hassan, A., Khairulnizam, A., Mordi, M. and Norita, M. (2009). Characterization of fish gelatin from surimi processing wastes: Thermal analysis and effect of transglutaminase on gel properties. Food Hydrocolloids, 23(6): 1610-1616.
  • Osorio, F. A., Bilbao, E., Bustos, R. and Alvarez, F. (2007). Effects of concentration, bloom degree, and pH on gelatin melting and gelling temperatures using small amplitude oscillatory rheology. International Journal of Food Properties, 10(4):841-851.
  • Otoni, C. G., Avena‐Bustillos, R. J., Chiou, B. S., Bilbao‐Sainz, C., Bechtel, P. J. and McHugh, T. H. (2012). Ultraviolet‐B radiation induced cross‐linking improves physical properties of cold‐and warm‐water fish gelatin gels and films. Journal of food science, 77(9): E215-E223.
  • Poungchawanwong, S., Klaypradit, W., Li, Q., Wang, J. and Hou, H. (2020). Interaction effect of phenolic compounds on Alaska Pollock skin gelatin and associated changes. LWT, 133: 110018.
  • Pranoto, Y., Lee, C. M. and Park, H. J. (2007). Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT-Food Science and Technology, 40(5):766-774.
  • Schreiber, R. and Gareis, H. (2007). Gelatine Handbook: Theory and Industrial Practice 1st Edition. Wiley-VCH, Weinheim, Germany.
  • Sha, X.-M., Tu, Z.-C., Wang, H., Huang, T., Duan, D.-L., He, N., . . .and Xiao, H. (2014). Gelatin quantification by oxygen-18 labeling and liquid chromatography–high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 62(49): 11840-11853.
  • Songchotikunpan, P., Tattiyakul, J. and Supaphol, P. (2008). Extraction and electrospinning of gelatin from fish skin. International Journal of Biological Macromolecules, 42(3).247-255.
  • Sow, L. C. and Yang, H. (2015). Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocolloids, 45: 72-82.
  • Strauss, G. and Gibson, S. M. (2004). Plant phenolics as cross-linkers of gelatin gels and gelatin-based coacervates for use as food ingredients. Food Hydrocolloids, 18(1): 81-89.
  • Van Nieuwenhove, I., Salamon, A., Peters, K., Graulus, G.-J., Martins, J. C., Frankel, D., . . .and Dubruel, P. (2016). Gelatin-and starch-based hydrogels. Part A: Hydrogel development, characterization and coating. Carbohydrate Polymers, 152: 129-139.
  • Voigt, M. N. and Botta, J. R. (1990). Advances in Fisheries Technology and Biotechnology for Increased Profitability: Papers from the 34th Atlantic Fisheries Technological Conference. Technomic Publishing Co, LANCASTER, USA.
  • Wang, Y., Hao, R., Mráz, J., Pu, Y., Li, S., Dong, X. and Pan, J. (2022). Gelling and emulsifying properties of tiger puffer (Takifugu rubripes) skin gelatin as manipulated by pH. Journal of Molecular Liquids, 369: 120886.
  • Woods, R. J. and Pikaev, A. K. (1993). Applied radiation chemistry: radiation processing. John Wiley & Sons Inc, New Jersey, USA.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Teknolojileri
Bölüm Makaleler
Yazarlar

Tuncay Gümüş 0000-0001-7635-5519

Deniz Damla Altan Kamer 0000-0002-9119-5979

Gülce Bedis Kaynarca 0000-0001-7896-457X

Tuğba Günaydı 0000-0002-1934-3367

Erken Görünüm Tarihi 15 Aralık 2023
Yayımlanma Tarihi 25 Aralık 2023
Gönderilme Tarihi 13 Ocak 2023
Kabul Tarihi 12 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 20 Sayı: 4

Kaynak Göster

APA Gümüş, T., Altan Kamer, D. D., Kaynarca, G. B., Günaydı, T. (2023). Şarapçılık Atığı ile Yapısı Güçlendirilmiş Balık Jelatininin Reolojik Özellikleri Üzerine pH ve Gamma Işınlamanın Kombine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 20(4), 918-932. https://doi.org/10.33462/jotaf.1232103
AMA Gümüş T, Altan Kamer DD, Kaynarca GB, Günaydı T. Şarapçılık Atığı ile Yapısı Güçlendirilmiş Balık Jelatininin Reolojik Özellikleri Üzerine pH ve Gamma Işınlamanın Kombine Etkisi. JOTAF. Aralık 2023;20(4):918-932. doi:10.33462/jotaf.1232103
Chicago Gümüş, Tuncay, Deniz Damla Altan Kamer, Gülce Bedis Kaynarca, ve Tuğba Günaydı. “Şarapçılık Atığı Ile Yapısı Güçlendirilmiş Balık Jelatininin Reolojik Özellikleri Üzerine PH Ve Gamma Işınlamanın Kombine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 20, sy. 4 (Aralık 2023): 918-32. https://doi.org/10.33462/jotaf.1232103.
EndNote Gümüş T, Altan Kamer DD, Kaynarca GB, Günaydı T (01 Aralık 2023) Şarapçılık Atığı ile Yapısı Güçlendirilmiş Balık Jelatininin Reolojik Özellikleri Üzerine pH ve Gamma Işınlamanın Kombine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi 20 4 918–932.
IEEE T. Gümüş, D. D. Altan Kamer, G. B. Kaynarca, ve T. Günaydı, “Şarapçılık Atığı ile Yapısı Güçlendirilmiş Balık Jelatininin Reolojik Özellikleri Üzerine pH ve Gamma Işınlamanın Kombine Etkisi”, JOTAF, c. 20, sy. 4, ss. 918–932, 2023, doi: 10.33462/jotaf.1232103.
ISNAD Gümüş, Tuncay vd. “Şarapçılık Atığı Ile Yapısı Güçlendirilmiş Balık Jelatininin Reolojik Özellikleri Üzerine PH Ve Gamma Işınlamanın Kombine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 20/4 (Aralık 2023), 918-932. https://doi.org/10.33462/jotaf.1232103.
JAMA Gümüş T, Altan Kamer DD, Kaynarca GB, Günaydı T. Şarapçılık Atığı ile Yapısı Güçlendirilmiş Balık Jelatininin Reolojik Özellikleri Üzerine pH ve Gamma Işınlamanın Kombine Etkisi. JOTAF. 2023;20:918–932.
MLA Gümüş, Tuncay vd. “Şarapçılık Atığı Ile Yapısı Güçlendirilmiş Balık Jelatininin Reolojik Özellikleri Üzerine PH Ve Gamma Işınlamanın Kombine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi, c. 20, sy. 4, 2023, ss. 918-32, doi:10.33462/jotaf.1232103.
Vancouver Gümüş T, Altan Kamer DD, Kaynarca GB, Günaydı T. Şarapçılık Atığı ile Yapısı Güçlendirilmiş Balık Jelatininin Reolojik Özellikleri Üzerine pH ve Gamma Işınlamanın Kombine Etkisi. JOTAF. 2023;20(4):918-32.